1. The reactivity among the alkali metals increases as you go down the group due to the decrease in the effective nuclear charge from the increased shielding by the greater number of electrons. The greater the atomic number, the weaker the hold on the valence electron the nucleus has, and the more easily the element can lose the electron. Conversely, the lower the atomic number, the greater pull the nucleus has on the valence electron, and the less readily would the element be able to lose the electron (relatively speaking). Thus, in the first set comprising group I elements, sodium (Na) would be the least likely to lose its valence electron (and, for that matter, its core electrons).
2. The elements in this set are the group II alkaline earth metals, and they follow the same trend as the alkali metals. Of the elements here, beryllium (Be) would have the highest effective nuclear charge, and so it would be the least likely to lose its valence electrons. In fact, beryllium has a tendency not to lose (or gain) electrons, i.e., ionize, at all; it is unique among its congeners in that it tends to form covalent bonds.
3. While the alkali and alkaline earth metals would lose electrons to attain a noble gas configuration, the group VIIA halogens, as we have here, would need to gain a valence electron for an full octet. The trends in the group I and II elements are turned on their head for the halogens: The smaller the atomic number, the less shielding, and so the greater the pull by the nucleus to gain a valence electron. And as the atomic number increases (such as when you go down the group), the more shielding there is, the weaker the effective nuclear charge, and the lesser the tendency to gain a valence electron. Bromine (Br) has the largest atomic number among the halogens in this set, so an electron would feel the smallest pull from a bromine atom; bromine would thus be the least likely here to gain a valence electron.
4. The pattern for the elements in this set (the group VI chalcogens) generally follows that of the halogens. The greater the atomic number, the weaker the pull of the nucleus, and so the lesser the tendency to gain electrons. Tellurium (Te) has the highest atomic number among the elements in the set, and so it would be the least likely to gain electrons.
The solid compound, K2SO4 contains a cation called K+ and an anion called SO42-. In this case, there are 2 atoms of potassium, 1 atom of sulfur and 4 moles of oxygen. The compound also contains ionic bonds because of the composing non-metals and metal.
Answer:
- They are highly reactive metals
- They have low electro negativity
- They have low ionization energy
- They don't exist alone in nature
- They have low densities
Explanation:
Alkali metals are the elements in group 1 of the periodic table. They include Sodium, Lithium, Potassium e.t.c.
Due to the fact they have one atom in their outermost shell, they are very unstable because they easily react with other elements and are therefore don't exist alone in nature but combined with other elements for this same reason.
Since alkali metals don't easily attract other elements due to it's lone pair in the outer most shell, it can be said to have low electro negativity.
Also, they don't need energy to discharge their electrons since they are highly reactive due to their lone pair in the outermost shell and so we say they have low ionization energy.
Due to this reason, they also have low densities.
Answer:
Why do most atoms form chemical bonds? They want a full outer shell of electrons, so the lose, gain, or share electrons with other elements, forming compounds, until they have 8 valence electrons and become stable. Double and triple covalent bonds that have greater bond energy and are shorter than single bonds.
Explanation: HOPE THIS HELPS YOU..
There are 2 covalent bonds between the Nitrogen and Oxygen, and 1 between the Nitrogen and Chlorine.
It should be 3.