Answer:
Photoelectric effect, pair production and Compton scattering
Explanation:
Gamma rays, having no charge, can be slowed slowly by ionization as a material passes through. They suffer other mechanisms that eventually make them disappear, transferring their energy, they can cross several centimeters of a solid, or hundreds of meters of air, without undergoing any process or affecting the material they cross. Then they suffer one of the three effects and deposit much of their energy there. The three mechanisms of interaction with matter are: the photoelectric effect, the Compton effect and the production of pairs.
The photoelectric effect is that the photon meets an electron in the material and transfers all its energy, disappearing the original photon. The secondary electron acquires all the energy of the photon in the form of kinetic energy, and is sufficient to separate it from its atom and convert it into a projectile. This is stopped by ionization and excitation of the material
In the Compton effect the photon collides with an electron as if it were a clash between two elastic spheres. The secondary electron acquires only part of the energy of the photon and the rest takes it with another photon of lesser energy and diverted.
When an energy photon approaches the intense electric field of a nucleus, the production of pairs can happen. In this case the photon is transformed into an electron positron pair. Since the sum of the mass of the pair is 1.02 MeV, it cannot happen if the photon's energy is less than this amount. If the energy of the original photon is greater than 1.02 MeV, the surplus is distributed by the electron and the positron as kinetic energy, and the material can be ionized. The positron at the end of its path forms a positronium and then annihilates producing two annihilation photons, 0.51 MeV each.
Answer : The pressure of hydrogen gas is 8.96 atm.
Explanation :
The given balanced chemical reaction is:

From the balanced chemical reaction we conclude that,
As, 2 moles of Al react to give 3 moles of
gas
So, 4.50 moles of Al react to give
moles of
gas
Now we have to calculate the moles of
gas when percent yield is 75.4.

Now we have to calculate the pressure of
gas.
Using ideal gas equation :
PV = nRT
where,
P = Pressure of hydrogen gas = ?
V = Volume of the hydrogen gas = 14.0 L
n = number of moles of hydrogen gas = 5.09 moles
R = Gas constant = 
T = Temperature of hydrogen gas = 300 K
Putting values in above equation, we get:

Therefore, the pressure of hydrogen gas is 8.96 atm.
I am not all understood but for the school to earn money you can:
make
--a raffle
--lotto
-- yard sale
-- class photo
-- origami for sale or something
-- buffet or food sale (example all Friday ice cream sale, 2 livre ice cream)
Answer:
As the temperature of a solid, liquid or gas increases, the particles move more rapidly.