Answer:
cover the taste with sugar add two times the amount your supposed to put in
Explanation:
Answer:
1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm
Explanation:
An ideal gas is a set of atoms or molecules that move freely without interactions. The pressure exerted by the gas is due to the collisions of the molecules with the walls of the container. The ideal gas behavior is at low pressures, that is, at the limit of zero density. At high pressures the molecules interact and intermolecular forces cause the gas to deviate from ideality.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1 atm
- V= 22.4 L
- n= ?
- R= 0.082

- T=273 K
Reemplacing:
1 atm* 22.4 L= n* 0.082
*273 K
Solving:

n= 1 mol
Another way to get the same result is by taking the STP conditions into account.
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C (or 273 K) are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.
<u><em>1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm</em></u>
Answer:
Covalent solids, also called network solids, are solids that are held together by covalent bonds. As such, they need localized electrons (shared between the atoms) and therefore the atoms are arranged in fixed geometries. Distortion far from this geometry can only occur through a breaking of covalent sigma bonds.
Pls help i need one more brainly to rank up. And have a great day :D
The options
Select one:
a. a 3- ion forms.
b. the noble gas configuration of argon is achieved.
c. the result is a configuration of 1s2 2s2 2p6.
d. the atom gains five electrons.
Answer:
c. the result is a configuration of 1s2 2s2 2p6.
Explanation:
Aluminium atom has atomic number of 13 , hence the number of electron is 13 for a neutral atom of aluminium. When aluminium atom reacts with other elements it usually gives out three electron to attain the octet configuration.
The cation representation of aluminium is Al3+ because it has loss three electron to attain the octet rule. Aluminium will be left with 10 electrons after losing 3 of it electrons. The electronic configuration will be represented as follows after losing three electrons;
1S² 2S² 2P∧6 .
At this stage the octet rule has been achieved as it will be represented as
2 8. The first energy shell now contains two electron and the second energy shell contains 8 electrons.
The configuration of Neon has been formed in the process.