The correct answer for this question is activation energy, orientation, and frequency.
The rate of a chemical reaction is directly related to its activation energy because the higher the activation energy the lower is the rate of reaction as we know the reaction only proceed when the reactants have absorbed the enough heat energy to reach the transition state. Thus activation energy determines the rate of reaction.
The orientation of the particles is also very important as we know that the reaction between the two reactants only occur when they collide with proper orientation in time the greater the probability of the collision the greater is the rate of reaction and also the number of collisions also determines the rate of reaction.
The frequency is directly proportional to the rate of chemical reaction as the frequency of the collision increases the rate of the chemical reaction also increases.
To know more about the factors effecting rate of chemical reaction click here:
brainly.com/question/16048169
#SPJ4
Solar: rays from the sun shine on solar pannels creating energy which is a renewable energy.
Water: water stored at a dam flows through turbines creating energy which is a renewable energy
Fossil fuels: fossil fuels are extracted from the ground the burned to create energy and this is a nonrenewable resource.
Hope this helps :)
Answer:
Calcium is more reactive.
Explanation:
It is higher in the reactivity series, and contains more energy levels.
Answer:
30 positive charged protons
It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).