Chromium oxide (Cr2O5) More... Molecular Weight. 151.99 g/mol. Component Compounds.
Answer:

=> The colour of this stone is usually a pale greenish blue, owing to the presence of iron impurities. Stones that are treated with heat look more blue than green. On the Mohs scale of hardness, aquamarine ranges between 7.5 and 8 making it a relatively hard gemstone.
=> The best way to identify a real aquamarine stone is by looking at its colour. In its natural form, they have a pale blue colour, which is similar to seawater. They may have a slight green or yellow tint as well. Naturally occurring gems have excellent clarity and transparency.
=> The hardness of the stone is another feature you can use to identify the stone. Aquamarine stones are hard and they don’t get scratches easily. However, they can easily scratch glass and other such surfaces. So, if you find visible scratches on the stone, rethink your decision to buy it.
=> Most faceted aquamarine stones are clean to the eye and clear of any inclusions. However, translucent and opaque aquamarine is also available. These are usually fashioned into cabochons or beads. In some cases, inclusions may appear as parallel tubes. Such stones can be crafted to show a cat’s eye. Stones with cat’s eye and star effect are rare and highly priced.
Answer:
1,100,160J or 262.94 kcal
Explanation:
The juice is frozen at 0 degrees Celsius and I assume that it will become gas at 100 degrees Celsius. So we change the form of the water from solid to liquid, then to gas. That means we have to find out how much heat needed to change water form too, not only the heat needed to increase its temperature.
The latent heat of water is 4.2J/g °C while the heat of fusion is 334 J/g and the heat of vaporization is 2260 J/g. The energy needed will be:
360g * 4.2J/g °C * (110-0°C ) + 360g * 334 J/g + 360g * 2260 /g = 1,100,160J or 262.94 kcal.