Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
First compute the number of grams of manganese metal required to make 21.7 grams of H2.
21.7 g H2 x (1 mole H2/ 2 g H2) x (1 mole Mn/1 mol H2) x (55 grams Mn/1 mol Mn) = 596.75 grams
Now density = mass/volume
7.43 = 596.75/volume
volume = 596.75/7.43 = 80.31 mL
80.31 mL is the amount of manganese needed.
Rates can be calculated with Arrhenius equation k = Axe^(-Ea/RT)
a. temperature affects the rate - imagine you are making coffee, so coffee crystals are boiled faster on higher temperature. Simplified but makes sense.
b. Ea is activation energy. Imagine, while preparing coffee, some of ingredients change to a different one, so there is a A -> B reaction (simplified). Now, Ea is energy barrier that stands on the arrow of this reaction, preventing A to transform to B. If Ea is small, reaction will go easy (not fast!), if Ea is large –reaction will not happen so easy (you ll have to use catalyst for example)
Answer: type of mutation that causes the replacement of a single base nucleotide with another nucleotide of the genetic material, DNA or RNA. The term point mutation also includes insertions or deletions of a single base pair.
Explanation: