The angular momentum calculated with respect to the axis of rotation of an object is given by:

where m is the object's mass, v is its tangential speed, and r is its distance from the axis of rotation.
In case of a man on a Ferris wheel, we need to have these quantities in order to calculate his angular momentum. These quantities corresponds to:
- m, the mass of the man
- v, the tangential speed of the wheel at its edge
- r, the radius of the wheel
It is possible to calculate the angular momentum even if we don't know v, the tangential speed. In this case, we need to know at least the angular velocity

(because from this relationship we can find the tangential speed:

) or the period of rotation of the wheel, T (because we can find the angular velocity from it:

).
Answer: If the gravitacional acceleration is 1/6 of Earth's gravitational acceleration, it means that moon's gravitational acceleration is less than Earth's. Also, if the gravitational acceleration is less than Earth's, the astronaut's weight decreases since we calculate it multiplying his body mass by the gravity in the place given.
On Earth, an astronaut that is 70kg weights 70kg * 9.8 m/s² = 686N
On the Moon, the same astronaut would weight 70kg * 9.8 m/s² * 1/6 = 114,3 N
So, the astronaut’s weight decreases because the moon’s gravitational acceleration is less than Earth’s.
Answer: C.
Explanation:
i choose B and got it wrong it told me the answer after on edge.
Answer:
work done to move a charge from one point to another point is known as potential difference between the points