Answer:
35.16 degrees
Explanation:
Knowing that the index of refraction of the guide is 1.33, calculate the resulting angle of refraction for a ray of light that falls on a pool with an angle of incidence of 50º
Refractive index, n = 1.33
The angle of incidence, i = 50°
We need to find the angle of refraction. let it is r. It can be calculated using Snells law as follows:

So, the angle of refraction is 35.16 degrees.
The answer is 0.981 J
E = m · g · h<span>
E - energy
m - mass
g - gravitational acceleration
h - height
We know:
E = ?
m = 0.10 kg
g = 9.81 m/s</span>²
h = 1 m
E = 0.10 kg * 9.81 m/s² * 1 m = 0.981 J
Answer:
Option 3: -48 cm
Explanation:
We are given:
refractive index; n = 1.5
radius of curvature; r2 = 24 cm
Formula for the focal length is given as;
1/f = (n - 1) × [(1/r1) - (1/r2)]
As r1 tends to infinity, 1/r1 = 0
Thus,we now have;
1/f = (n - 1) × (-1/r2)
Plugging in the relevant values;
1/f = (1.5 - 1) × (-1/24)
1/f = -0.02083333333
f = -1/0.02083333333
f = -48 cm
According to Newton's 3rd law of motion, every action has an equal and opposite reaction.
So Wall must apply a force of 50 Newton but in opposite direction.
Hope you got it :-D
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.