The net force will point towards the acceleration of the object, as supported by Newton's second law.
1. First blank is A. Conductors
Second blank is D. Insulators
2. C. Heat
Answer:
50%
Explanation:
Humidity is the amount water vapor present in the atmosphere.
Relative humidity is defined as the ratio of partial water vapor present in air to the actual water vapor at a particular temperature. It is expressed in percentage and the higher the percentage RH, the more the saturated water vapor present in the atmosphere and vice versa.
It is expressed mathematically as shown;
RH = actual water vapor in air/saturated water vapor × 100%
If the actual water vapor in the air was 4 grams per cubic meter and the air's capacity to hold water vapor was 8 grams per cubic meter
Actual water vapor = 4g/cm³
Air's water capacity (saturated water vapor) = 8g/cm³
RH = 4/8×100
RH = 50%
The answer is B. Nutrients.
<span>22.5 newtons.
First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as:
E = 0.5mv^2
where
E = Energy
m = mass
v = velocity
Substituting known values and solving gives:
E = 0.5 3.06 kg (7 m/s)^2
E = 1.53 kg 49 m^2/s^2
E = 74.97 kg*m^2/s^2
Now ignoring air resistance, how much energy should the rock have had?
We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So
3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2
So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is
299.88 J - 74.97 J = 224.91 J
So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division.
224.91 J / 10 m
= 224.91 kg*m^2/s^2 / 10 m
= 22.491 kg*m/s^2
= 22.491 N
Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>