Answer:
Velocity of the electron = v = 1.2\times 10^8\ m/s.
Explanation:
Given,
- Mass of the electron =

- Charge on the electron =

- Charge density of the ring =

- Radius of the ring = R = 0.70 m
- Distance between the electron ant the center or the ring = x = 0.5 m
Now total charge on the ring = 
Potential energy due to the charged ring to the point on the x-axis is

Let v be the velocity of the electron at the center of the ring.
Total kinetic energy of the electron = 
Now, From the conservation of energy,
the total potential energy of the electron at initially is converted to the total kinetic energy of the electron at the center of the ring,

Hence the velocity of the electron on the center of the charged ring is 
energy. It will not disrupt the picture developing process by overexposing too much light on the film.
Answer:
Explanation:
When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.
Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.
While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.
On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.
-identifies an electric charge
-it can identify its polarity (positive or negative) if you compare it to a charge that you already know
-can identify the magnitude of a charge (how big of a charge it is)
Answer:
8.854 pF
Explanation:
side of plate = 0.1 m ,
d = 1 cm = 0.01 m,
V = 5 kV = 5000 V
V' = 1 kV = 1000 V
Let K be the dielectric constant.
So, V' = V / K
K = V / V' = 5000 / 1000 = 5
C = ε0 A / d = 8.854 x 10^-12 x 0.1 x 0.1 / 0.01 = 8.854 x 10^-12 F
C = 8.854 pF