5/8=0.625 4/5=.8
5/8 because 5/8=0.625 and because its 2x you multiply 0.625 by 2=1.25 then you do 1.25+5=6.25 4/5=.8 6.25 times .8=5 5-4=1
X=5/8 or 0.625
We are given with the equilibrium constant of acid, HF and is asked to calculate the pH of 0.30 M NaF solution. The formula to be followed is
Ka = [H+][F-]/[HF]Ka = 7.2 x 10 -4 = x^2/[0.3-x]x = [H+]= pH = -log (H+) = 1.84
There are three types of muscle, skeletal or striated, cardiac, and smooth. Muscle action can be classified as being either voluntary or involuntary. Cardiac and smooth muscles contract without conscious thought and are termed involuntary, whereas the skeletal muscles contract upon command.
Given :
Molarity of sulfuric acid solution is 3.0 M.
Amount of sulfuric acid present in solution is 9.809 g.
To Find :
The volume of solution.
Solution :
We know, molarity is given by :

Therefore, volume required is 33.33 ml .
During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.