Answer:
665 ft
Explanation:
Let d be the distance from the person to the monument. Note that d is perpendicular to the monument and would make 2 triangles with the monuments, 1 up and 1 down.
The side length of the up right-triangle knowing the other side is d and the angle of elevation is 13 degrees is

Similarly, the side length of the down right-triangle knowing the other side is d and the angle of depression is 4 degrees

Since the 2 sides length above make up the 200 foot monument, their total length is
0.231d + 0.07d = 200
0.301 d = 200
d = 200 / 0.301 = 665 ft
First, find the amount of time for the dart to hit the board using this equation: t = d/v
t = 2 m/ 15 m/s = 0.133 s
Then, find the height the dart has fallen from its initial point using this equation: h = 0.5gt²
h = 0.5(9.81 m/s²)(0.133 s)² = 0.0872 m or 8.72 cm
Since the diameter of the bull's eye is only 5 cm, and you started at the same level of the top of the bull's eye, that means the maximum allowance would only be 5 cm. Since it exceeded to 8.72 cm, it means that <em>Veronica will not hit the bull's eye.</em>
Answer:
<em><u>5</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>3</u></em><em><u> </u></em><em><u>f</u></em><em><u>t</u></em><em><u>/</u></em><em><u>s</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>d</u></em><em><u>p</u></em><em><u>)</u></em>
Explanation:
Speed = Distance/Time
80/1.58 = 50.63291139
= <u>50.63</u><u> </u><u>f</u><u>t</u><u>/</u><u>s</u> (2dp)
Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules