We can use the equation for Newton's Law of Gravitation
Fg = (Gm₁m₂)/r²
Where gravitational constant = G = 6.674 x 10⁻¹¹ N · m²/kg²
mass m₁ = 0.145 kg
mass m₂ = 6.8 kg
distance between centers of masses = r = 0.5 m
Substitute these values into...
Fg = (Gm₁m₂)/r²
Fg = ((6.674 x 10⁻¹¹)(0.145)(6.8)) / (0.5)²
Fg = 2.63 x 10⁻¹⁰ N
Therefore, your answer should be <span>2.6 × 10–10</span>
Answer:
Work done = 4584.9 J
Explanation:
given: q1=3.0 mC = 3.0 × 10⁻³ C, r = 20 cm = 0.20 m, q1 = 34μC = 34 × 10⁻⁶ C
Solution:
Formula for the potential difference at the center of the circle
P.E = K × q1 q2 /r (Coulomb's constant k= 8.99 × 10⁹ N·m² / C²)
P.E = 8.99 × 10⁹ N·m² / C² × 3.0 × 10⁻³ C × 34 × 10⁻⁶ C / 0.20 m
P.E = 4584.9 J = Work done
Answer:
A) 3.11 Hrs
Explanation:
Wave speed is given by the formula

now we will have


now the time taken by the wave to move the distance 560 km is given as



t = 3.11 hours
Answer:
Of course harder
Explanation:
Just imagone the floor is wet and you walk on it, do u feel it hard or easy to walk? :D
I need a picture please befor i can answer