To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.
PART A)
The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:
. This is the total charge on the inner surface of the conducting shell.
PART B)
The positive charge (of the same value) on the external surface of the conducting shell is:

The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,



Answer
Given,
y(x, t) = (3.5 cm) cos(2.7 x − 92 t)
comparing the given equation with general equation
y(x,t) = A cos(k x - ω t)
A = 3.5 cm , k = 2.7 rad/m , ω = 92 rad/s
we know,
a) ω =2πf
f = 92/ 2π
f = 14.64 Hz
b) Wavelength of the wave
we now, k = 2π/λ
2π/λ = 2.7
λ = 2 π/2.7
λ = 2.33 m
c) Speed of wave
v = ν λ
v = 14.64 x 2.33
v = 34.11 m/s
It is an example of rolling friction because balls roll.
Answer is ROLLING
Answer:
the money that would be saved is $13.14.
Explanation:
Given;
power consumed by the light bulb, P = 100 W = 0.1 kW
time of running the bulb, t = 3 hours for 365 days = 1,095 hours
cost rate of power consumption, C = $0.12 per kWh
Energy consumed by the light bulb for the given days;
E = Pt
E = 0.1 kW x 1,095 hr
E = 109.5 kWh
Cost of energy consumed = 109.5 kWh x $0.12 / kWh
= $13.14
Therefore, the money that would be saved is $13.14.
The standard wave format for any wave is transverse wave