The least potential energy would go at the very bottom of the track. the greatest kinetic energy would be on the upper half of the track and the least kinetic energy would be on the lower half of the track. please review this on google if you are not sure.
Using Newtons Second Law:
F = m×a
F = (0.25 kg)(-2 m/s²)
F = -0.5 N
<h2>The correct option is C</h2>
Answer:
E) 80 N/m
Explanation:
Given;
mass of the block, m = 4.8 kg
displacement of the block, x = -0.5 m
velocity of the block, v = -0.8 m/s
acceleration of the block, a = 8.3 m/s²
From Newton's second law of motion;
F = ma
Also, from Hook's law;
F = -Kx
where;
k is the force constant
Thus, ma = -kx
k = -ma/x
k = -(4.8 x 8.3) / (-0.5)
k = 79.7 N/m
k ≅ 80 N/m
Therefore, the force constant of the spring is closest to 80 N/m