1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
11

A 5.0 c charge is 10 m from a small test charge. what is the magnitude of the electric field at the location of the test charge

?
Physics
1 answer:
Inessa [10]3 years ago
7 0

Answer:

4.50*10^8\frac{N}{C}

Explanation:

The electric field is generated by a charge and represents the force exerted on a test charge, that is, the electric force per unit of charge. Therefore the equation for the electric field can be obtained from Coulomb's law.

E=\frac{F}{q}\\E=\frac{kq}{r^2}\\E=\frac{5C*8.99*10^9\frac{Nm^2}{C^2}}{(10 m)^2}=4.50*10^8\frac{N}{C}

You might be interested in
A vertically polarized beam of light of intensity 100 W/m2 passes through two ideal polarizers. The transmission axis of the fir
TEA [102]

To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

I=I_0 cos^2\theta

Where,

I_ {0} indicates the intensity of the light before passing through the polarizer,

I is the resulting intensity, and

\theta indicates the angle between the axis of the analyzer and the polarization axis of the incident light.

Since we have two objects the law would be,

I=I_0cos^2\theta_1*cos^2(\theta_2-\theta_1)

Replacing the values,

I=100*cos^2(20)*cos^2(40-20)

I=100*cos^4(20)

I=77.91W/m^2

Therefore the intesity of the light after it has passes through both polarizers is 77.91W/m^2

7 0
3 years ago
Two balls are dropped from rest and allowed to fall. If one ball is allowed to fall for 1 s and the other for 3 s compare the di
kirill115 [55]

The second ball traveled a greater distance when compared to the first ball because the second ball spent more time in motion.

The given parameters;

  • time of fall of the first ball, t = 1 s
  • time of fall of the second ball, t = 3 s

The distance traveled by each ball is calculated using the second equation of motion as shown below.

The distance traveled by the first ball is calculated as follows;

h = u_0t + \frac{1}{2} gt^2\\\\h = 0 + \frac{1}{2} gt^2\\\\h = \frac{1}{2} gt^2\\\\h = (0.5\times 9.8\times 1^2)\\\\h = 4.9 \ m

The distance traveled by the second ball is calculated as follows;

h = \frac{1}{2} gt^2\\\\h = (0.5\times 9.8\times 3^2)\\\\h = 44.1\ m

Thus, the second ball traveled a greater distance because it spent more time in motion.

Learn more here:brainly.com/question/5868480

3 0
1 year ago
A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The bal
Setler [38]

Answer

given,

mass of the ball = 3 kg

swing in vertical circle with radius = 2 m

   work done by the gravity = ?          

   work done by the tension = ?            

Work done by the gravity = - m g Δh            

 Δ h = 2 + 2 = 4 m                                                                

Work done by the gravity =- 3 \times 9.8 \times 4

                                           = -117.6 J                  

work done by gravity is equal to -117.6 J            

Work done by tension will be equal to zero.        

Zero because tension is always perpendicular to velocity

work done by tension is equal to 0 J                          

7 0
3 years ago
A 0.45kg baseball is pitched towards home plate at 20 m/s. The ball is hit back towards the pitcher with a speed of 30 m/s. What
Inessa05 [86]

Answer:

4.5kgm/s

Explanation:

Change in momentum is expressed as

Change in momentum = m(v-u)

M is the mass

V is the final velocity

u is the initial velocity

Given

m=0.45kg

v = 30m/s

u = 20m/s

Substitute

Change in momentum = 0.45(30-20)

Change in momentum = 0.45×10

Change in momentum = 4.5kgm/s

3 0
2 years ago
A generator produces 38 mwmw of power and sends it to town at an rms voltage of 78 kvkv. part a what is the rms current in the t
4vir4ik [10]

The rms current in the transmission lines is I = 487.18 A.

The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force  is used to represent the source. it is the rectangular root of the time average of the voltage squared.

Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.

Electric power is  by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values

power = 38 M watt

rms voltage = 78 K v

power = IV

I = power/V

I = (38 * 1000000)/78*1000

I = 487.18 A.

Learn more about rms current here:-brainly.com/question/20913680

#SPJ4

7 0
2 years ago
Other questions:
  • A 1500 kg car on flat ground is moving 5.25 m/s. Its engine creates a 1250 N forward force as the car moves 42.8 m. What is its
    15·1 answer
  • Average distance of 160.0 cm. Its average time was 5.74 seconds. What is its average speed?
    6·1 answer
  • Discuss how the gradualist model of evolution differs from the punctuated equilibrium model of evolution
    14·1 answer
  • Downstream peripheral pulses have a higher pulse pressure because the pressure wave travels faster than the blood itself. What o
    15·1 answer
  • A solar cell has an open circuit voltage value of 0.60 V with a reverse saturation current density of Jo = 3.9 × 10−9 A/m2 . The
    13·1 answer
  • What is a science that deals with disease?
    6·1 answer
  • As the car falls off the cliff, what is happening to the kinetic energy of the falling car?
    12·1 answer
  • Write down any 5 example of conservation of momentum?​
    15·1 answer
  • Paula has walked in a straight line, 30.5° north of west, for 1650 meters. How far south and east should she walks to return to
    14·1 answer
  • The gravitational force between two objects is f. If masses of both objects are halved without changing distance between them, t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!