Answer:
maximum height on moon is 6 times more than the maximum height on Earth
Explanation:
Let the Astronaut has its maximum speed by which he can jump is "v"
now for the maximum height that it can jump is given as

now from above equation we will have

now we have

now if Astronaut jump on the surface of moon with same speed
then we know that the acceleration of gravity on surface of moon is 1/6 times the gravity on earth
so at surface of moon we have

now we have

so maximum height on moon is 6 times more than the maximum height on Earth
Answer:
<em>A = 6.9 cm</em>
Explanation:
<u>Simple Harmonic Motion</u>
A mass-spring system is a common example of a simple harmonic motion device since it keeps oscillating when the spring is stretched back and forth.
If a mass m is attached to a spring of constant k and they are set to oscillate, the angular frequency of the motion is

The equation for the motion of the object is written as a sinusoid:

Where A is the amplitude.
The instantaneous speed is computed as the derivative of the distance

And the maximum speed is

Solving for the amplitude

Computing w

Calculating A


<span><span>Fuel Extraction and Production – Water is a critical resource for the drilling and mining of natural gas, coal, oil, and uranium. In many cases, fuel extraction also produces wastewater, as with natural gas and oil wells and coal slurry ponds.
</span><span>
Fuel Refining and Processing – Oil, uranium, and natural gas all require refining before they can be used as fuels – a process that uses substantial amounts of water.
</span><span>
Fuel Transportation – Water is used to transport coal through slurries — pipelines of finely ground coal mixed with water — and to test energy pipelines for leaks.[1]</span><span>Emissions Control – Many thermoelectric power plants emit sulfur, mercury, particulates, carbon dioxide, and other pollutants, and require pollution control technologies. These technologies also require significant amounts of water to operate.</span></span>
From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>
In nomine patris, et filii, et spiritus sancti.