Answer:
She will make the mass of the smiley face twice as massive in order to keep the mobile in perfect balance.
Explanation:
mass of an object is directly proportional to the cube of its length. In this case the length is constant, the mass will also be constant for the smiley face, so that the mobile will be kept in perfect balance.
Therefore, If Anya decides to make the star twice as massive, and not change the length of any crossbar or the location of any object, she will make the mass of the smiley face twice as massive in order to keep the mobile in perfect balance.
Answer:
DS = 13865.7[J/K]
Explanation:
We can calculate the energy of the rock, like the potential energy relative to the lake level. Which can be calculated by means of the following expression of the potential energy:
![E_{p}=m*g*h\\\\where:\\m = mass = 2000[kg]\\h = elevation = 200 [m]\\g = gravity = 9.81[m/s^2]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%202000%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%20200%20%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D)
Therefore:
![E_{p}=2000*9.81*200\\E_{p}=3924000 [J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2000%2A9.81%2A200%5C%5CE_%7Bp%7D%3D3924000%20%5BJ%5D%5C%5C)
This energy is transformed into thermal energy.
we shall remember that isothermal heat transfer processes are internally reversible, so the entropy change of a system during one of these processes can be determined, by the following expression.
![DS=\frac{Q}{T}\\ where:\\DS = entropy change [J/K]\\Q = Heat transfer [J]\\T = temperature [K]](https://tex.z-dn.net/?f=DS%3D%5Cfrac%7BQ%7D%7BT%7D%5C%5C%20where%3A%5C%5CDS%20%3D%20entropy%20change%20%5BJ%2FK%5D%5C%5CQ%20%3D%20Heat%20transfer%20%5BJ%5D%5C%5CT%20%3D%20temperature%20%5BK%5D)
T = 5 + 278 = 283[K]
DS = 3924000 / 283
DS = 13865.7[J/K]
Answer:
I don't understand please interpret
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .