1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
3 years ago
12

a painting in an art gallery has height h and is hung so that its lower edge is a distance d above the eye of an observer. How f

ar from the wall should the observer stand to get the best view?

Physics
1 answer:
harkovskaia [24]3 years ago
4 0

Solution:

With reference to Fig. 1

Let 'x' be the distance from the wall

Then for \DeltaDAC:

tan\theta = \frac{d}{x}

⇒ \theta = tan^{-1} \frac{d}{x}

Now for the \DeltaBAC:

tan\theta = \frac{d + h}{x}

⇒ \theta = tan^{-1} \frac{d + h}{x}

Now, differentiating w.r.t x:

\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}]

For maximum angle, \frac{d\theta }{dx} = 0

Now,

0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} -  tan^{-1} \frac{d}{x}][/tex]

0 = \frac{-(d + h)}{(d + h)^{2} + x^{2}} -\frac{-d}{x^{2} + d^{2}}

\frac{-(d + h)}{(d + h)^{2} + x^{2}} = \frac{{d}{x^{2} + d^{2}}

After solving the above eqn, we get

x = \sqrt{\frac{d}{d + h}}

The observer should stand at a distance equal to x = \sqrt{\frac{d}{d + h}}

You might be interested in
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
When an object is fully magnetized, all of its magnetic domains will be ?
kkurt [141]
The answer is to this question D
4 0
3 years ago
Read 2 more answers
Given a force of 100 N and acceleration of 5 m/s2, what is the mass
tatyana61 [14]

Answer:

20 kg

Explanation:

remember the equation f=ma.

100 N=force

5 m/s2= acceleration

so you need to divide force by acceleration: 100 N/ 5 m/s2= 20 kg, to get the mass.

8 0
2 years ago
Draw and label a picture or make a real life model of something to display conservation of energy. Make sure it is something tha
sweet-ann [11.9K]
The picture shows it has a real life something to display conservation of energy  with kinetic energy and potential energy. 


Five sentences are for potential and kinetic energy. Potential energy is to energy an object when it stores. Kinetic energy is something to motion. When the potential energy is slows down the potential energy it might be increases. As from the object when the speeds up and it is decreases to potential energy.

Kinetic energy is to calculated by KE= mass×velocity²/2 as a fraction.

Potential energy is to calculated by PE= mass×g×height.

And the another picture it has a <span>energy, kinetic energy, mechanical energy, conservation of energy.

</span>

6 0
3 years ago
The distiction between long and short term memory
RUDIKE [14]

Answer:

The main difference between short term and long term memory is that the short term memory stores data temporarily while the long term memory stores data permanently. Moreover, the short term memory is volatile while the long term memory is nonvolatile. Memory is the component in a computer that stores data and information.

Explanation:

4 0
3 years ago
Other questions:
  • Which of the following describes what needs to occur in order to reduce force while doing the same amount of work?
    6·1 answer
  • What energy powers the star throughout its life?
    14·1 answer
  • Consider the system shown in fig. 6-26. the rope and pulley have negligible mass, and the pulley is frictionless. the coefficien
    8·1 answer
  • 1 Do alien exist<br>2 why sky is blue<br>3 what is the weight of sky<br>4 why occasion is blue​
    12·2 answers
  • Sully uses a battery and a coil of wire to create an electromagnet. Using the same materials, if he wants to increase the streng
    9·2 answers
  • A tennis ball traveling horizontally at a speed of 40 m/s hits a wall and rebounds in the opposite direction. The time Interval
    14·1 answer
  • When researching online, as long as the gathered information is the result of a valid Internet search engine, it is not necessar
    9·1 answer
  • When you put the iron cube in the olive oil and the brick cube in the water what loses heat more quickly and why? The oil or the
    11·1 answer
  • A toy helicopter has a mass of .25 kg. The rotors of the helicopter exert an upward lift
    12·1 answer
  • to what height will a 250g soccer ball rise to if it is kicked directly upwards at 8 meters per second​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!