Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
German physicist Albert Betz (in 1919) demonstrated that the highest efficiency you can achieve with a wind turbine is around 59%
We would have to analyze the design of an specific turbine to determine its efficiency, however it is unlikely to achieve 50% , as todays turbines have an average efficiency in the 20-35%
The answer would be around 25%
Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Given a = 10 cm/s²
u = 0 cm/s
v = 50 cm/s
we know that
v²=u²+2aS
2500=2×10×S
2500÷20 = S
S= 125 cm
The ramp is 125 cm
Since the electric field between the plates is constant, If the two plates are brought closer together, the potential difference between the two plates decreases
The relation between potential difference and the electric field is given by ΔV = E.d
Since the electric field is maintained constant, the potential difference is directly inversely proportional to the distance between the plates.
The potential difference between the plates will therefore likewise decrease if the distance between the plates is reduced, we will state in this case.
The energy required to move a unit charge, or one coulomb, from one point to the other in a circuit is measured as the potential difference between the two points. Potential difference is measured in volts or joules per coulomb.
Refer to more about the potential difference here
brainly.com/question/12198573
#SPJ4