speed, volume, mass, temperature and power
The sciences concerned with the study of inanimate natural objects, including physics, chemistry, astronomy, and related subjects.
Motion of a ball thrown by a person upwards and caught after some time is an example of motion in which displacement of the particle is zero but acceleration is not zero in journey.
The displacement of the ball is zero because the starting and end point of the motion are same, i.e, the person's hands.During its motion, the acceleration of ball is constant and non zero called as acceleration due to gravity, g= -9.8 m/s². The velocity of ball is continuously changing. It first decreases during the upward motion of the ball and then increases during the downward journey.The acceleration remains constant and non zero all the time.
A meteor is the flash of light that we see in the night sky when a small chunk of interplanetary debris burns up as it passes through our atmosphere. "Meteor" refers to the flash of light caused by the debris, not the debris itself.
If any part of a meteoroid survives the fall through the atmosphere and lands on Earth, it is called a meteorite.
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.