In the question "Which of the following is a common human relations mistake?" The correct answer is "Misjudging others' abilities<span>"
The other answer options "Saying thank you when somebody does something nice" and "Taking responsibility for mistakes" are all good human realation practices.</span>
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.
Answer:
deflected toward bottom of the screen
Explanation:
When entering the region with magnetic field, a magnetic force is exerted on the proton. This force is perpendicular to both the direction of the magnetic field and the direction of the velocity of the proton.
The direction of the force can be determined by using the right-hand rule. We have:
- Index finger: direction of the velocity of the proton --> to the right
- Middle finger: direction of the magnetic field --> into the screen
- Thumb: direction of the magnetic force --> toward bottom of the screen
So, the correct answer is
deflected toward bottom of the screen