Bacteria get rid of waste through their semi-permeable membrane by diffusion. The waste is pushed out of the organism in the form of liquid or gas. The waste released by bacteria is usually toxic and is what makes people sick.
Answer:

Explanation:
Electrostatic Forces
The force exerted between two point charges
and
separated a distance d is given by Coulomb's formula

The forces are attractive if the charges have different signs and repulsive if they have equal signs.
The problem described in the question locates three point charges in a straight line. The charges have the values shown below


The distance between
and
is

The distance between
and
is

We must find the value of
such that

Applying Coulomb's formula for
is

Now for 

If the total force on
is zero, both forces must be equal. Note that being q2 negative, the force on q3 is to the right. The force exerted by q1 must go to the left, thus q1 must be positive. Equating the forces we have:


Simplfying and solving for 



Answer:
3. 3.5 s
Explanation:
The position of traveller A is given by the equation:

where
is the acceleration of A
t is the time measured from when A started the motion
The position of traveller B instead is given by

where a (acceleration) is the same as traveller A, and

is B's initial velocity. We can verify that the formula is correct by substituting t=2, and we get
, which means that B starts its motion 2 seconds later.
Traveller B overtakes traveller A when the two positions are the same, so:

Some examples of projective tests are the Rorschach Inkblot Test, the Thematic Apperception Test (TAT), the Contemporized-Themes Concerning Blacks test, the TEMAS (Tell-Me-A-Story), and the Rotter Incomplete Sentence Blank (RISB).
Some examples of projective tests are the Rorschach Inkblot Test, the Thematic Apperception Test (TAT), the Contemporized-Themes Concerning Blacks test, the TEMAS (Tell-Me-A-Story), and the Rotter Incomplete Sentence Blank (RISB).
m = 43.2 kg
Explanation:
volume of sphere = (4/3)pi(r)^3
= (4/3)(3.14)(2 m)^3
= 33.5 m^3
density = mass/volume
or solving for mass m,
m = (density)×(volume)
= (1.29 kg/m^3)(33.5 m^3)
= 43.2 kg