Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:
Density of 127 I = 
Also, 
Explanation:
Given, the radius of a nucleus is given as
.
where,
- A is the mass number of the nucleus.
The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

For the nucleus 127 I,
Mass, M = 
Mass number, A = 127.
Therefore, the density of the 127 I nucleus is given by

On comparing with the density of the solid iodine,

Explanation:
Q1) What is the speed of the tip of the minute hand of a clock where the hand is of length 7cm?
Ans1) speed, v=st=2πrT=2×227×7×10-260×60=119×10-4=1.22×10-4m/s
<h2>
<em><u>Hope it helps</u></em></h2>
The point obviously is in the 3rs quadrant
So
စ= tan^-1( y/x)-180
စ= -89.7°