Answer:
Option A.
Explanation:
In quantum physics <u>there is a law to relate the position and the momentum of the particle</u>, it says that if we know with precision where is a quantum particle, we can not know the momentum of this particle, in other words, the velocity of the particle. So, when we measure the velocity of the particle we find the correct value of the particle, but we can not determine with accuracy where is the particle. This law is known as the Heisenberg's uncertainty principle and, its expressed as follows:
<em>where Δx: is the position's uncertainty, Δp: is the momentum's uncertainty and h: is the Planck constant.</em>
Therefore, the correct answer is A: measuring the velocity of a tiny particle with an electromagnet has no effect on the velocity of the particle. It only affects the determination of the particle's position.
I hope it helps you!
Answer:
The magnitude of the electric field intensity is
Explanation:
From the question we are told that
The voltage is 
The thickness of the membrane is
Generally the electric field intensity is mathematically represented as

substituting values


You need to move the decimal point between the six and nine. 6.9 X 10^-4
The same 500N, is the Newton’s Third Law.