Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.
Answer:
Forces between molecules
Explanation:
The tensions between molecules are the characteristic that explains variances in the specific heat capacity of two substances.
This means that a substance's specific heat capacity will increase or be higher the closer its atoms are bound together. As a result, it differs for the different states of matter, such as solid, liquid, and gas.
Electromagnetic waves don't require medium to travel
Ex- light waves