Answer:
Q = 40.1 degrees
Explanation:
Given:
- The weight of the timber W = 670 N
- Water surface level from pivot y = 2.1 m
- The specific density of water Y = 9810 N / m^3
- Dimension of timber = (0.15 x 0.15 x 0.0036) m
Find:
- The angle of inclination Q that the timber makes with the horizontal.
Solution:
- Calculate the Flamboyant Force F_b acting upwards at a distance x along the timber, which is unknown:
F_b = Y * V_timber
F_b = 9810*0.15*0.15*x
F_b = 226.7*x N
- Take static equilibrium conditions for the timber, and take moments about the pivot:
(M)_p = 0
W*0.5*3.6*cos(Q) - x/2 * F_b*cos(Q) = 0
- Plug values in:
670*0.5*3.6 - x^2 * 0.5*226.7 = 0
x^2 = 1206 / 113.35
x = 3.26 m
- Now use the value of x and vertical height y to compute the angle of inclination to be:
sin(Q) = y / x
sin(Q) = 2.1 / 3.26
Q = sin^-1 (0.6441718)
Q = 40.1 degrees
its C because i just anwserd it & it was right
Answer:
The distance is 
Explanation:
From the question we are told that
The wavelength of the light is 
The distance between the slit is 
The between the first and second dark fringes is 
Generally fringe width is mathematically represented as

Where D is the distance of the slit to the screen
Hence

substituting values


Answer:
An asteroid impact could affect the tilt of the Earth due to the force it applies onto the planet. This would change Earth's seasons due to the fact that Earth's tilt causes seasons.
Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)