Answer:
systems
Explanation:
they are a bunch of things functioning together
Answer:
rm = 38280860.6[m]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.
The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.
1 == toroid
2= solenoid
<span>According to the formula :
</span><span>a=<span><span>ΔV / </span><span>ΔT
</span></span></span><span>When a body is moving with a uniform velocity, the acceleration is zero. That's it. You should remember, that velocity is not constant whereas speed is constant.</span>
<em><u>A</u></em><em><u>. </u></em><em><u>R</u></em><em><u>E</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>S</u></em><em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>L</u></em><em><u>I</u></em><em><u>G</u></em><em><u>H</u></em><em><u>T</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>C</u></em><em><u>A</u></em><em><u>U</u></em><em><u>S</u></em><em><u>E</u></em><em><u> </u></em><em><u>THE</u></em>RE<em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>RED</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>.</u></em>
<em><u>A</u></em><em><u>L</u></em><em><u>S</u></em><em><u>O</u></em><em><u> </u></em><em><u>I</u></em><em><u>F</u></em><em><u> </u></em><em><u>Y</u></em><em><u>O</u></em><em><u>U</u></em><em><u> </u></em><em><u>D</u></em><em><u>O</u></em><em><u>N</u></em><em><u>T</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>L</u></em><em><u>I</u></em><em><u>E</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>S</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>C</u></em><em><u>H</u></em><em><u> </u></em><em><u>I</u></em><em><u>T</u></em><em><u> </u></em><em><u>F</u></em><em><u>R</u></em><em><u>O</u></em><em><u>M</u></em><em><u> </u></em><em><u>G</u></em><em><u>O</u></em><em><u>O</u></em><em><u>G</u></em><em><u>L</u></em><em><u>E</u></em>