We need to use the kinematic equation
S=ut+(1/2)at^2
where
S=displacement (+=up, in metres)
u=initial velocity (m/s)
t=time (seconds)
a=acceleration (+=up, in m/s^2)
Substitute values
S=displacement = 1.96-2.27 = -0.31 m (so that shot does not hit his head)
u=11.1
a=-9.81 (acceleration due to gravity)
-0.31=11.1t+(1/2)(-9.81)t^2
Rearrange and solve for t
-4.905t^2+11.1t-0.31=0
t=-0.02756 or t=2.291 seconds
Reject the negative root to give
t=2.29 seconds (to 3 significant figures)
Answer:
D. gravity
Explanation:
Gravity keeps the atmosphere from escaping into space.
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
In a projectile, the horizontal acceleration is zero. The velocity remains constant at all times. However, the <u>vertical acceleration</u> is -9.81m/s^2.
Hope this helps!
Answer:
1.23 m/s²
Explanation:
Given:
v₀ = 0 m/s
v = 11.1 m/s
t = 9 s
Find: a
Equation:
v = at + v₀
Plug in:
11.1 m/s = a (9 s) + 0 m/s
a = 1.23 m/s²
The runner's acceleration is 1.23 m/s².