Answer:
The velocity of the ball is 3.52 m/s.
Explanation:
A projectile is any object that moves under the influence of gravity and momentum only. Examples are; a thrown ball, a fired bullet, a kicked ball, thrown javelin, etc.
Given that the ball was thrown vertically upward on the top of a skyscraper of height 61.9 m. So that the velocity can be determined by;
u = 
Where: u is the velocity of the object, H is the height and g is the gravitational force on the object. Given that: H = 61.9 m and g = 10 m/
, then;
u = 
= 
u = 3.5185
The velocity of the ball is 3.52 m/s.
true true tire true tire ture
please mark brainlist
Answer:
(a) a = - 201.8 m/s²
(b) s = 197.77 m
Explanation:
(a)
The acceleration can be found by using 1st equation of motion:
Vf = Vi + at
a = (Vf - Vi)/t
where,
a = acceleration = ?
Vf = Final Velocity = 0 m/s (Since it is finally brought to rest)
Vi = Initial Velocity = (632 mi/h)(1609.34 m/ 1 mi)(1 h/ 3600 s) = 282.53 m/s
t = time = 1.4 s
Therefore,
a = (0 m/s - 282.53 m/s)/1.4 s
<u>a = - 201.8 m/s²</u>
<u></u>
(b)
For the distance traveled, we can use 2nd equation of motion:
s = Vi t + (0.5)at²
where,
s = distance traveled = ?
Therefore,
s = (282.53 m/s)(1.4 s) + (0.5)(- 201.8 m/s²)(1.4 s)²
s = 395.54 m - 197.77 m
<u>s = 197.77 m</u>
Answer:
A) 0.50 mV
Explanation:
In this problem, we can think the wings of the bird as a metal rod moving across a magnetic field. So, and emf will be induced into the wings of the bird, according to the formula:

where
is the strength of the magnetic field
v = 13 m/s is the speed of the bird
L = 1.2 m is the wingspan of the bird
is the angle between the direction of motion and the direction of the magnetic field
Substituting numbers into the formula, we find
