Answer:
what? that's 66 total, 6 more elliptical machines, a 1 to 1.2 ratio
but I don't know what else you would mean
Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
M(Ca(NO3)2)= M(Ca) + M(N) + 6M(O)= 40.0 +14.0 +6*16.0 = 150 g/mol
15.0 g Ca(NO3)2 * 1mol/150 g = 0. 100 mol Ca(NO3)2
Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
1 mol 2 mol
0.100 mol 0.200 mol
We have 0.2 mol NO3⁻ in 300. mL=0.300 L of solution,
so
0.200 mol NO3⁻ / 0.300 L solution ≈ 0.667 mol NO3⁻ /L solution = 0.667 M
Concentration of NO3⁻ is 0.667 M.
Fe3O4 + 4H2 = 3Fe + 4H2O
Fe3O4 + 4H2SO4 = Fe2(SO4)3 + FeSO4 + 4H2O
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.
Answer:
See explanation below
Explanation:
You are not providing the starting material, however, I manage to find a similar question to this, so I'm gonna use it as a basis to help you answer yours.
Now let's analyze what is happening in the reaction so we can predict the final product.
We have a ketone here, reacting at first with LDA. This is a very strong base that is commonly used in reactions with ketones and aldehydes to promove a condensation. To do this, as LDA is a strong base it will occur firts an acid base reaction, substracting the most acidic hydrogen in the molecule (Which in this case, is the Beta hydrogen of the carbonile). This will cause an enolate formation.
Then, this enolate will react with the CH3I and form a new product. The final result would be a ketone with a methyl group now attached. In the picture 2, you have the mechanism and final product.
Hope this helps