Answer: 1) Temperature can change the solubility of a solute.
Explanation:
The chart is missing so there is no way to tell what does the graph show.
Yet, I can help you because I can explain the status of each statement of the choices. As you will see there is only one possibility..
<span>1) Temperature can change the solubility of a solute.
Yes, temperature definetly can, and mostly do, modify the solubility of a solute.
You can search any chart of solubility and will find that.
I can give you two examples:
a) Sodium chloride: dissolve some spoons of salt in a cold water until you can not dissolve more. Then, heat the water, you will find that more salt will get dissolved, proving that the temperature of the solution increases the solubility of sodium chloride.
b) Carbon dioxide gas: the soft drinks have CO₂ molecules dissolved in it.
The higher the temperature of the soft drink the less the amount of CO₂(g) that can be dissolved. That is why the soda bottling plants cool the beverage before adding the CO₂(g).
2) </span><span>Temperature has no affect on the solubility of a solute.
Since this is the opposite to the first statement and the first is true, this is false.
3) Salt has a greater solubility than sugar.
False.
This is an empirical result, which you cannot predict theoretically. So you need to see at the data either in a table or in a chart. Else you can test it at home. After the empirical data are shown it results that more grams of sugar can be dissolved in water compared to salt.
That is something you ca see in a chart or you can prove by yourself.
4) Nitrite salt has a greater solubility than sugar.
</span>
False.
Looking at some data you can find that sodium nitrite solutiliby is aroun 70 - 100 g/10 g while sugar (sucrose) solutiblity is around 180 - 235 g/ 100 g.
Answer: The correct option is, They are different units of concentration.
Explanation: Molarity : It is defined as the number of moles of solute present in one liter of solution.
Answer:
Hello!
Explanation:
I didn´t know if you knew, but there is no attachment. :)
Addition of chlorine to water gives both hydrochloric acid (HCl) and hypochlorous acid (HClO)
What are Transition metal oxides ?
Transition metal oxides (TMOs) are another class of nanomaterials, frequently used as anode in alkaline batteries due to their distinctive properties such as abundant active sites, short diffusion pathways, low preparation cost, high theoretical capacity and distinct reaction mechanism.
Cl2 + H2O ⇌ HClO + HCl
Cl2 + 4 OH− ⇌ 2 ClO− + 2 H2O + 2 e−
Cl2 + 2 e− ⇌ 2 Cl−
The acid can also be prepared by dissolving dichlorine monoxide in water; under standard aqueous conditions, anhydrous hypochlorous acid is currently impossible to prepare due to the readily reversible equilibrium between it and its anhydride.
2 HClO ⇌ Cl2O + H2O K (at 0 °C) = 3.55×10−3 dm3 mol−1
The presence of light or transition metal oxides of copper, nickel, or cobalt accelerates the exothermic decomposition into hydrochloric acid and oxygen
2 Cl2 + 2 H2O → 4 HCl + O2
To learn more about exothermic decomposition click on the link below:
brainly.com/question/20089404
#SPJ4
I can't see the picture, but in general, I believe it is in dropping from the first energy level above the ground state, to the ground state.