Answer:
Conduction is usually faster in certain solids and liquids than in gases. Materials that are good conductors of thermal energy are called thermal conductors. Metals are especially good thermal conductors because they have freely moving electrons that can transfer thermal energy quickly and easily.
Heat transfer by convection happens through the air, and there are millions of minuscule air spaces between the fibers. Heat transfer by radiation is also slow since one fiber must radiate its heat to another.
When we give heat then kinetic energy is increase and this heat is transferred from hot metal to cold metal through this free electrons. As in insulator the free electrons are negligible so that the heat is not transferred from hot junction to cold junction due to absence of this free electrons.
Explanation:
maek me as brainliest
Answer:
The minimum frequency of the coil is 7.1 Hz
Explanation:
Given;
number of turns, N = 200 turns
cross sectional area, A = 300 cm² = 300 x 10⁻⁴ m²
magnitude of magnetic field strength, B = 30 x 10⁻³ T
maximum value of the induced emf, E = 8 V
Maximum induced emf is given as;
E = NBAω
where
ω is angular velocity (ω = 2πf)
E = NBA2πf
where;
f is the minimum frequency, measured in hertz (Hz)
f = E / (NBA2π)
f = 8 / (200 x 30 x 10⁻³ x 300 x 10⁻⁴ x 2 x 3.142)
f = 7.073 Hz
f = 7.1 Hz
Therefore, the minimum frequency of the coil is 7.1 Hz
The first one is electrical energy
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
"Copernicus"was the one person among the following choices given in the question that <span>challenged the geocentric model of the solar system. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has come to your desired help.</span>