Answer:
Both have the same balance on a weight with. 2 dimensional figures on the area formula
Explanation:
Answer:
Neutrons are all identical to each other, just as protons are. Atoms of a particular element must have the same number of protons but can have different numbers of neutrons.
Explanation:
Since the vast majority of an atom's mass is found its protons and neutrons, subtracting the number of protons (i.e. the atomic number) from the atomic mass will give you the calculated number of neutrons in the atom. In our example, this is: 14 (atomic mass) – 6 (number of protons) = 8 (number of neutrons).
Answer:
Mass in kg = 4.7*10^19 kg
Mass in tons = 5.2*10^16 tons
Explanation:
<u>Given:</u>
Total volume of sea water = 1.5*10^21 L
Mass % NaCl in seawater = 3.1%
Density of seawater = 1.03 g/ml
<u>To determine:</u>
Total mass of NaCl in kg and in tons
<u>Calculation:</u>
Unit conversion:
1 L = 1000 ml
The volume of seawater in ml is:



To convert mass from g to Kg:
1000 g = 1 kg

To convert mass from g to tons:
1 ton = 9.072*10^6 g

I have provided the steps and solution within the attachment. The pH of the solution would be 12.30, this indicates that the solution is basic, as a higher value of pH indicates presence of more hydroxide ions and less of hydrogen ions in the solution.