In a series circuit, all devices are constrained to a single flow of current. There can only be a single value for the current for all devices, otherwise this would violate the conservation of charge. Therefore the current must be the same across each resistor.
<h3>The answer is D.</h3>
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
Answer:
The intensity is 
Explanation:
From the question we are told that
The intensity of the unpolarized light is 
The angle between the ideal polarizing sheet is 
Generally the intensity of light emerging from the first polarizer is mathematically represented as

substituting values


Then the intensity of incident light emerging from the second polarizer is mathematically represented by Malus law as

substituting values
![I_2 = 2000 * [cos (24.58)]^2](https://tex.z-dn.net/?f=I_2%20%20%3D%202000%20%20%2A%20%5Bcos%20%2824.58%29%5D%5E2)

Answer:
Passed into the power grid for others to use the electricity
Explanation:
If a home uses a large supply of solar panels to generate electricity, but has no battery system, surplus electricity that is produced is usually passed into the power grid for others to use the electricity, generating a income to the homeowner