Answer:
The total mechanical energy of a pendulum is conserved neglecting the friction.
Explanation:
- When a simple pendulum swings back and forth, it has some energy associated with its motion.
- The total energy of a simple pendulum in harmonic motion at any instant of time is equal to the sum of the potential and kinetic energy.
- The potential energy of the simple pendulum is given by P.E = mgh
- The kinetic energy of the simple pendulum is given by, K.E = 1/2mv²
- When the pendulum swings to one end, its velocity equals zero temporarily where the potential energy becomes maximum.
- When the pendulum reaches the vertical line, its velocity and kinetic energy become maximum.
- Hence, the total mechanical energy of a pendulum as it swings back and forth is conserved neglecting the resistance.
Answer:
false
Explanation:
bc the faster car has more inertia (i dont think im correct)
not sure but feels like it
Answer:
check 2 photos for answer
check 2 photos for answer
To solve this problem we must basically resort to the kinematic equations of movement. For which speed is defined as the distance traveled in a given time. Mathematically this can be expressed as

Where
d = Distance
t = time
For which clearing the time we will have the expression

Since we have two 'fluids' in which the sound travels at different speeds we will have that for the rock the time elapsed to feel the explosion will be:


In the case of the atmosphere -composite of air- the average speed of sound is 343m / s, therefore it will take


The total difference between the two times would be


Therefore 3.357s will pass between when they feel the explosion and when they hear it