Citric acid has the molecular formula C6H8O7 so you can add the molar masses of the elements from the periodic table. C has a molar mass of 12.01 g/mol, H has 1.01 g/mol and O has 15.999 g/mol. Now you calculate the total molar mass= (6*12.01 + 8*1.01 + 7*15.999). This yields a molar weight of 192.124 g/mol (anhydrous)
Answer:
D. oxygen atoms have twice as many protons as chlorine atoms
Answer:
False
Explanation:
The physical properties of melting point, boiling point, vapor pressure, evaporation, viscosity, surface tension, and solubility are related to the strength of attractive forces between molecules. These attractive forces are called Intermolecular Forces.
Properties of a compound is completely different from their elements.
Water is composed by hydrogen and oxygen.
For example, the boiling point of oxygen is - 183 °C and hydrogen is - 253 °C, meanwhile, water has a boiling point of 100°C
Another example is when you put a burning wooden splint into oxygen, it burns more brightly. Put it in hydrogen, you may hear a "pop" sound, or even explode when large amount of hydrogen. But if u put a burning splint in water, it goes off.
Answer:
An alkali metal present in period 2 have larger first ionization energy.
Explanation:
Ionization energy:
The amount of energy required to remove the electron from the atom is called ionization energy.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus. Thus alkali metal present in period 2 have larger ionization energy because of more nuclear attraction as compared to the alkali metal present in period 4.