Answer:
Explanation:
The two major defects of simple electric cells causes current supplied to be for short time. These defects are: polarization and local action.
a. Polarization: This is a defect caused by an accumulation of hydrogen bubbles at the positive electrode of the cell. It can be prevented by the use of vent, using a hydrogen absorbing material or the use of a depolarizer.
b. Local Action: This is the gradual wearing away of the electrode due to impurities in the zinc plate. It can be controlled by the amalgamation of the zinc plate before it is used.
Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)
Answer:
Explanation:
According to heisenberg uncertainty Principle
Δx Δp ≥ h / 4π , where Δx is uncertainty in position , Δp is uncertainty in momentum .
Given
Δx = 1 nm
Δp ≥ h /1nm x 4π
≥ 6.6 x 10⁻³⁴ / 10⁻⁹ x 4 π
≥ . 5254 x ⁻²⁵
h / λ ≥ . 5254 x ⁻²⁵
6.6 x 10⁻³⁴ /. 5254 x ⁻²⁵ ≥ λ
12.56 x 10⁻⁹ ≥ λ
longest wave length = 12.56 n m
The student who did the most work is student 2 with 2500 Joules.
<u>Given the following data:</u>
To determine which of the students did the most work:
Mathematically, the work done by an object is given by the formula;

<u>For </u><u>student 1</u><u>:</u>

Work done = 600 Joules
<u>For </u><u>student 2</u><u>:</u>

Work done = 2500 Joules.
Therefore, the student who did the most work is student 2 with 2500 Joules.
Read more: Read more: brainly.com/question/13818347
Momentum = mass x velocity
So both mass and velocity affect an object's momentum.