<span>To determine the magnitude and the direction of the resultant force, we assume that the forces are in XY coordinate plane and the angles that are given are from the x axis.
</span>
<span>The 110 N force is said to act at 90 deg which means it is along the Y axis. The </span><span>55 N force is said to act at 0 deg which means it is along the X axis. so, a right angle is made by the two forces. Thus, the
</span>
<span>X component of the resultant force = 55 N </span>
<span>Y component of the resultant force = 110 N </span>
<span>Magnitude of the resultant force would be calculated as follows:
R = √(Fx^2 + Fy^2)
R = √(55^2 + 110^2) </span>
<span>R = √(15125) </span>
<span>R = 123 N </span>
<span>The resultant force would have its terminal side in the x-axis. We calculate angle θ as follows:
</span>
<span>tan θ = Fy/Fx </span>
<span>tan θ = 110 N /55 N = 2
</span>θ = arctan(2)
θ <span>= 63.4 degrees
</span>Therefore, the m<span>agnitude of the resultant force is 123 N and the direction would be at an angle of 63.4 degrees.</span>
Answer:
A) The wave that travels through the rail reaches the microphone first.
B) separation in time between the arrivals of the two pulses is 0.01539 seconds.
Explanation:
Detailed explanation and calculation is shown in the image below
Explanation: As the angle is increased the acceleration of the object is increased as the angle increases the component of the force parallel to the incline increases and the component of forced perpendicular to the inclined decreases it is the parallel component of the weight vector that causes the acceleration.
I believe it is the percent abundance. Isotopes are atoms of the same element with similar atomic number but different mass number. Natural abundance is the abundance of isotopes of a chemical element as naturally found on the planet. The relative atomic mass of these isotopes is the atomic weight listed for the element in the periodic table.
Answer:
i believe he threw the ball up at about 18 mph
Explanation: