Given what we know, despite not having the figure attached to the question, we can still confirm that the magnitude for the acceleration of the dancer will be zero.
<h3>Why is the dancer's acceleration equal to zero?</h3>
This has to do with how the question clarifies the speed of the dancer. Though it does not give us an exact value, we are told that the speed is constant. This is an indicator that the acceleration is zero because with any other value for acceleration the speed <u>cannot remain</u> constant.
Therefore, given that any value for acceleration will increase or decrease the speed of the dancer, but we are told that the dancer's speed is constant throughout the trip, we can confirm that the magnitude for the acceleration of the dancer is zero.
To learn more about acceleration visit;
brainly.com/question/12134554?referrer=searchResults
Explanation:
Given that,
Weight of water = 25 kg
Temperature = 23°C
Weight of mass = 32 kg
Distance = 5 m
(a). We need to calculate the amount of work done on the water
Using formula of work done



The amount of work done on the water is 1568 J.
(b). We need to calculate the internal-energy change of the water
Using formula of internal energy
The change in internal energy of the water equal to the amount of the work done on the water.


The change in internal energy is 1568 J.
(c). We need to calculate the final temperature of the water
Using formula of the change internal energy





The final temperature of the water is 23.01°C.
(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.
The amount of heat is 1568 J.
Hence, This is the required solution.
Explanation:
An organ is made of several types of tissue and therefore several types of cells. For example, the heart contains muscle tissue that contracts to pump blood, fibrous tissue that makes up the heart valves, and special cells that maintain the rate and rhythm of heartbeats.
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
P=F/A