1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
5

M=-2 the imagine equals what?

Physics
1 answer:
WITCHER [35]3 years ago
8 0

Answer:

Image is twice as large as the object, and inverted

Explanation:

When an object is placed in front of a mirror, the mirror produces an image.

The magnification of the image is a number telling how much the size of the image is enlarged/diminished with respect to the object.

It is given by

M=\frac{y'}{y}

where

M is the magnification

y' is the size of the image

y is the size of the object

In this problem,

M = -2

This means that:

y'=My\\y' = -2y

So, we can conclude the following:

- The size of the image is twice the size of the real object

- The image is also inverted, because of the presence of the negative sign in the equation

You might be interested in
A space station, in the form of a wheel 140 m in diameter, rotates to provide an "artificial gravity" of 3.90 m/s2 for persons w
Zigmanuir [339]
Radial acceleration is given by

a_{rad}= \frac{v^2}{r}
where 

v=r \omega
then

a_{rad}= \frac{r^2 \omega^2}{r}=r\omega^2

Now

70\omega^2=3.90 \frac{m}{s^2}  \\  \\ \omega= \sqrt{ \frac{3.9}{70} }

Using the relation

\omega=2 \pi f

2 \pi f= \sqrt{ \frac{3.9}{70} }\\  \\ f= \frac{1}{2 \pi}\sqrt{ \frac{3.9}{70} }Hz

Putting into rpm

\frac{60}{2 \pi}\sqrt{ \frac{3.9}{70}} =2.254rpm

8 0
3 years ago
suggest an experiment to prove that the rate of evaporation of a liquid depends on its surface area vapour already present in su
gulaghasi [49]
That's two different things it depends on:

-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.

Here's what I have in mind for an experiment to show those two dependencies:

-- a closed box with a wall down the middle, separating it into two closed sections;

-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.

-- a tiny fan that blows air through a tube into the hole in one outer wall.

<u>Experiment A:</u>

-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================

<u>Experiment B:</u>

-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section.  Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================
6 0
3 years ago
A thin rod of length 0.64 m and mass 120 g is suspended freely from one end. It is pulled to one side and then allowed to swing
valina [46]

Answer:

1. Kinetic Energy = 0.0161 Joules

2. Height = 0.0137m

Explanation:

Given

Length of Rod, l = 0.64m

Mass, m = 120g = 0.12kg

Angular speed, w = 1.40 rad/s

a.

Calculating the Rod's kinetic energy

This is calculated by

Kinetic Energy = ½Iw²

Where I = rotational inertia of the rod about an axis.

This is calculated as follows;

I = Icm + mh²

I = ImL² + m(L/2)²

I = 1/12 * 0.12 * 0.64² + 0.12 * (0.64/2)²

I = 0.016384 kgm²

By substituton

KE = ½Iw² becomes

KE = ½ * 0.016384 * 1.40²

KE = 0.01605632J

KE = 0.0161 Joules

2. Using the total conservation of momentum;

K + U = Kf + V

Where K = Initial Kinetic Energy of the rod at lowest point.

U = Initial gravitational potential energy of the rod at lowest point

Kf = Final Kinetic Energy of the rod at maximum height = 0 J

V = Final gravitational potential energy of the rod at maximum height

So, K + U = Kf + V become

K + U = 0 + V

K + U = V

K = V - U = mgh

substitute 0.01605632J for K

0.01605632J = mgh

h = 0.01605632J/mg

h = 0.01605632J/(0.12 * 9.8)

h = 0.013653333333333

h = 0.0137m

4 0
3 years ago
In the Bronsted-Lowry Theory of acids and bases, an acid is this.
madreJ [45]

Answer: An acid is a substance that donates a proton and produces a conjugate base.

Explanation:

According to Bronsted-Lowry theory, an acid is a substance that donates a proton and produces a conjugate base while a base is a molecule or ion which accepts the proton.

An example of Bronsted-Lowry acid and base is Ethanoic acid, CH3COOH and hydroxide ion, OH- respectively as shown in the reaction below

CH3COOH(aq) + OH-(aq) <---> CH3COO-(aq) + H2O(l)

Thus, ethanoic acid acts as an acid by donating a proton to the hydroxide ion which accepts it, thus producing ethanoate ion, CH3COO- as a conjugate base.

6 0
3 years ago
Richard Julius once made a model plane that could travel a max speed of 110 m/s. Suppose the plane was held in a circular path b
hjlf

Answer:

85.8 m/s

Explanation:

We know that the length of the circular path, L the plane travels is

L = rθ where r = radius of path and θ = angle covered

Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt

where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path

Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed  and t = time,

θ = θ₀ + ωt = 0 + ωt = ωt

So, v = rdθ/dt + θdr/dt

v = rω + ωtdr/dt

v = (r + tdr/dt)ω

v = (r + tdr/dt)v'/r

v = v' + tv'/r(dr/dt)

v = v'[1 + t(dr/dt)/r]

Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)

So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]

v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]

v = 110 m/s[1 + 11.0 s(-0.02/s)]

v = 110 m/s[1 - 0.22]

v = 110 m/s(0.78)

v = 85.8 m/s

8 0
3 years ago
Other questions:
  • Which of the following states that all matter tends to "warp" space in its vicinity and that objects react to this warping by ch
    6·1 answer
  • Y=1/2 at^2 solve for t
    8·1 answer
  • A tennis ball is hit at an angle of 20° to the horizontal with the velocity of 20 m/s. What is its velocity in the Y direction?
    11·1 answer
  • What collides and creates a movement of heat called conduction?
    13·1 answer
  • A tube with sealed ends has some sand at one end. When the tube is turned upside down the sand falls 0.6m then settles down agai
    11·2 answers
  • .If Nellie Newton pushes an object with twice the force for twice the distance, she does
    12·1 answer
  • The charges of two particles are as follows: Q1=2 x 10 -8 C and Q2 = 3 x 10 -7 C. Find the magnitude of the force between these
    14·1 answer
  • A string is being pulled with a force of 20 N and moves a 5 kg block to the left at a constant speed. What is the coefficient of
    9·1 answer
  • Condyloid joints are, logically enough, created by joints at condyle bone markings.
    14·1 answer
  • Lunar phases occur when the moon appears to change shape as seen from earth. What causes different phases of the moon?.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!