The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Let volume of empty boat be = 100% = 1V
and mass of boat be M
In water 10%, 0.1V of the volume is submerged.
Mass, m of 1200kg increases the submerging from 10%, 0.1V to 70%, 0.7V
M leads to 0.1V boat submerging
boat submerging.
M + 1200kg leads to 0.7V boat submerging.
This is 60%, 0.6 V increase
By comparison
(M+1200kg) * 0.1V = 0.7V * M
0.1M + 120kg = 0.7M
120kg = 0.7M - 0.1M
120kg = 0.6M
M = (120/0.6)kg
M = 200kg.
The mass of the boat is 200kg.
Answer:
Explanation:
Some correct non-examples are: A glass half-empty; Anything in two dimensions; The amount that covers something.
Our values can be defined like this,



The problem can be solved for part A, through the Work Theorem that says the following,

Where
KE = Kinetic energy,
Given things like that and replacing we have that the work is given by
W = Fd
and kinetic energy by

So,

Clearing F,

Replacing the values


B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake