1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
7

(a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd

2 1015 cm3, Na 0, and (ii) Na 1016 cm3, Nd 7 1015 cm3. (b) Repeat part (a) for GaAs. (c) For the case of GaAs in part (b), the minority carrier concentrations are on the order of 103 cm3. What does this result mean physically
Engineering
1 answer:
padilas [110]3 years ago
4 0

Answer:

a.

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2 × 10¹¹ cm⁻³

ii. electron concentration, n₀ = 1.33 × 10¹¹ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

b.  

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2.205 × 10⁻³ cm⁻³

ii. electron concentration, n₀ = 1.47 × 10⁻³ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

Explanation:

a. For Germanium, intrinsic concentration n₁ = 2 × 10¹³ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ = acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ - 0) +√[(2 × 10¹⁵ cm⁻³ - 0)² + 4(2 × 10¹³ cm⁻³)²] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4.0016 × 10³⁰ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ + 2.0004 × 10¹⁵ cm⁻³ ]

n₀ = 1/2[4.0004 × 10¹⁵ cm⁻³ ]

n₀ = 2.0002 × 10¹⁵ cm⁻³ ≅ 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2 × 10¹³ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2 × 10¹¹ cm⁻³

ii.  For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁

p₀ = 1/2[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³) +√[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³)² + 4(2 × 10¹³ cm⁻³)²] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9.0016 × 10³⁰ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ + 3.0003 × 10¹⁵ cm⁻³ ]

p₀ = 1/2[6.0003 × 10¹⁵ cm⁻³ ]

p₀ = 3.00015 × 10¹⁵ cm⁻³ ≅ 3 × 10¹⁵ cm⁻³

Te electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2 × 10¹³ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.33 × 10¹¹ cm⁻³

b. For GaAs, intrinsic concentration n₁ = 2 × 10⁶ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂   and N₁ - N₂ = 2 × 10¹⁵ cm⁻³ >> n₁ = 2 × 10⁶ cm⁻³

n₀ = (N₁ - N₂) = 2 × 10¹⁵ cm⁻³ - 0 = 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2.1 × 10⁶ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2.205 × 10⁻³ cm⁻³

ii. For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁ and N₂ - N₁ = 10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³ = 3 × 10¹⁵ cm⁻³ >> n₁ = 2.1 × 10⁶ cm⁻³

p₀ ≅ N₂ - N₁ = 3 × 10¹⁵ cm⁻³

The electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2.1 × 10⁶ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.47 × 10⁻³ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

You might be interested in
Write a C program that will update a bank balance. A user cannot withdraw an amount ofmoney that is more than the current balanc
GarryVolchara [31]

Answer:

Explanation:

Sample output:

BANK ACCOUT PROGRAM!

----------------------------------

Enter the old balance: 1234.50

Enter the transactions now.

Enter an F for the transaction type when you are finished.

Transaction Type (D=deposit, W=withdrawal, F=finished): D

Amount: 568.34

Transaction Type (D=deposit, W=withdrawal, F=finished): W

Amount: 25.68

Transaction Type (D=deposit, W=withdrawal, F=finished): W

Amount: 167.40

Transaction Type (D=deposit, W=withdrawal, F=finished): F

Your ending balance is $1609.76

Program is ending

Code to copy:

// include the necessary header files.

#include<stdio.h>

// Definition of the function

float withdraw(float account_balance, float withdraw_amount)

{

// Calculate the balace amount.

float balance_amount = account_balance - withdraw_amount;

// Check whether the withdraw amount

// is greater than 0 or not.

if (withdraw_amount > 0 && balance_amount >= 0)

{

// Assign value.

account_balance = balance_amount;

}

// return account_balance

return account_balance;

}

// Definition of the function deposit.

float deposit(float account_balance, float deposit_amount)

{

// Check whether the deposit amount is greater than zero

if (deposit_amount > 0)

{

// Update account balance.

account_balance = account_balance + deposit_amount;

}

// return account balance.

return account_balance;

}

int main()

{

// Declare the variables.

float account_balance;

float deposit_amount;

float withdrawl_amount;

char input;

// display the statement on console.

printf("BANK ACCOUT PROGRAM!\n");

printf("----------------------------------\n");

// prompt the user to enter the old balance.

printf("Enter the old balance: ");

// Input balance

scanf("%f", &account_balance);

// Display the statement on console.

printf("Enter the transactions now.\n");

printf("Enter an F for the transaction type when you are finished.\n");

// Start the do while loop

do

{

// prompt the user to enter transaction type.

printf("Transaction Type (D=deposit, W=withdrawal, F=finished): ");

// Input type.

scanf(" %c", &input);

// Check if the input is D

if (input == 'D')

{

// Prompt the user to input amount.

printf("Amount: ");

// input amount.

scanf("%f", &deposit_amount);

// Call to the function.

account_balance=deposit(account_balance,deposit_amount);

}

// Check if the input is W

if (input == 'W')

{

printf("Amount: ");

scanf("%f", &withdrawl_amount);

// Call to the function.

account_balance = withdraw(account_balance,withdrawl_amount);

}

// Check if the input is F

if (input == 'F')

{

// Dispplay the amount.

printf("Your ending balance is $%.2f\n", account_balance);

printf("Program is ending\n");

}

// End the while loop

} while(input != 'F');

return 0;

}

the picture uploaded below shows the program screenshot.

cheers, i hope this helps.

5 0
3 years ago
In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?
taurus [48]

Answer:

<em>No, the velocity profile does not change in the flow direction.</em>

Explanation:

In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>

3 0
3 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
Explain how feedback control is used to<br> adjust robotic movements.
LuckyWell [14K]

Answer:

Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation

6 0
2 years ago
How does a motion sensor work?
Ahat [919]

Answer:

A motion sensor uses one or multiple technologies to detect movement in an area. When a sensor detects motion, it sends a signal to your security systems control panel, which connects to your monitoring panel system. This alerts you and the monitoring center to a potential threat in your home.

Hope It Helps You................

3 0
3 years ago
Other questions:
  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 25
    14·2 answers
  • Which of the code pieces below should replace the underline?public class Test{public static void main(String[] args){Test test =
    8·1 answer
  • Why is low voltage advantageous in arc welding?
    5·1 answer
  • Rain falls on a 1346 acre urban watershed at an intensity of 1.75 in/hr for a duration of 1 hour. The catchment land use is 20%
    10·1 answer
  • E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the read- and write-actions to the computation and show t
    12·1 answer
  • Select the correct answer. Jude is a mechanical engineer. He works in the automobile industry. He is creating a prototype of an
    13·1 answer
  • 50 points
    7·1 answer
  • Does anyone know how to fix this? It's a chromebook and project where I have to try to fix it​
    9·1 answer
  • I will give Brainliest, please help. :)
    11·2 answers
  • About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!