1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
4 years ago
7

(a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd

2 1015 cm3, Na 0, and (ii) Na 1016 cm3, Nd 7 1015 cm3. (b) Repeat part (a) for GaAs. (c) For the case of GaAs in part (b), the minority carrier concentrations are on the order of 103 cm3. What does this result mean physically
Engineering
1 answer:
padilas [110]4 years ago
4 0

Answer:

a.

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2 × 10¹¹ cm⁻³

ii. electron concentration, n₀ = 1.33 × 10¹¹ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

b.  

i. electron concentration, n₀ = 2 × 10¹⁵ cm⁻³, hole concentration, p₀ = 2.205 × 10⁻³ cm⁻³

ii. electron concentration, n₀ = 1.47 × 10⁻³ cm⁻³, hole concentration, p₀ = 3 × 10¹⁵ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

Explanation:

a. For Germanium, intrinsic concentration n₁ = 2 × 10¹³ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ = acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ - 0) +√[(2 × 10¹⁵ cm⁻³ - 0)² + 4(2 × 10¹³ cm⁻³)²] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ +√[(4.0016 × 10³⁰ cm⁻⁶] ]

n₀ = 1/2[(2 × 10¹⁵ cm⁻³ + 2.0004 × 10¹⁵ cm⁻³ ]

n₀ = 1/2[4.0004 × 10¹⁵ cm⁻³ ]

n₀ = 2.0002 × 10¹⁵ cm⁻³ ≅ 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2 × 10¹³ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2 × 10¹¹ cm⁻³

ii.  For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁

p₀ = 1/2[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³) +√[(10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³)² + 4(2 × 10¹³ cm⁻³)²] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9 × 10³⁰ cm⁻⁶ + 16 × 10²⁶ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ +√[(9.0016 × 10³⁰ cm⁻⁶] ]

p₀ = 1/2[(3 × 10¹⁵ cm⁻³ + 3.0003 × 10¹⁵ cm⁻³ ]

p₀ = 1/2[6.0003 × 10¹⁵ cm⁻³ ]

p₀ = 3.00015 × 10¹⁵ cm⁻³ ≅ 3 × 10¹⁵ cm⁻³

Te electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2 × 10¹³ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4 × 10²⁶ cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.33 × 10¹¹ cm⁻³

b. For GaAs, intrinsic concentration n₁ = 2 × 10⁶ cm⁻³.

i. For the electron concentration, n₀ wit N₁ = donor concentration = 2 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 0,

n₀ = 1/2[(N₁ - N₂) +√[(N₁ - N₂)² + 4n₁²] ]      since N₁ > N₂   and N₁ - N₂ = 2 × 10¹⁵ cm⁻³ >> n₁ = 2 × 10⁶ cm⁻³

n₀ = (N₁ - N₂) = 2 × 10¹⁵ cm⁻³ - 0 = 2 × 10¹⁵ cm⁻³

The hole concentration p₀ is gotten from

n₀p₀ = n₁²

p₀ = n₁²/n₀ = (2.1 × 10⁶ cm⁻³)²/2 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/2 × 10¹⁵ cm⁻³

p₀ = 2.205 × 10⁻³ cm⁻³

ii. For the hole concentration, p₀ wit N₁ = donor concentration = 7 × 10¹⁵ cm⁻³ and N₂ =  acceptor concentration = 10¹⁶ cm⁻³,

p₀ = 1/2[(N₂ - N₁) +√[(N₂ - N₁)² + 4n₁²] ]      since N₂ > N₁ and N₂ - N₁ = 10¹⁶ cm⁻³ - 7 × 10¹⁵ cm⁻³ = 3 × 10¹⁵ cm⁻³ >> n₁ = 2.1 × 10⁶ cm⁻³

p₀ ≅ N₂ - N₁ = 3 × 10¹⁵ cm⁻³

The electron concentration n₀ is gotten from

n₀p₀ = n₁²

n₀ = n₁²/p₀ = (2.1 × 10⁶ cm⁻³)²/3 × 10¹⁵ cm⁻³ = 4.41 × 10¹² cm⁻⁶/3 × 10¹⁵ cm⁻³

n₀ = 1.47 × 10⁻³ cm⁻³

c. It means that the minority carrier contribute little to the conductivity of the semi-conductor.

You might be interested in
Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
Gennadij [26K]

Answer:

23 W/K

Explanation:

Entropy of water at 15°C is 224.5 J/kg/K.

Entropy of water at 15.2°C is approximately 227.4 J/kg/K (interpolated).

The increase in entropy is therefore:

227.4 J/kg/K − 224.5 J/kg/K = 2.9 J/kg/K.

So the rate of entropy generation is:

2.9 J/kg/K × 8 kg/s = 23.2 W/K

Rounded to two significant figures, the rate is 23 W/K.

3 0
3 years ago
A boiler is designed to work at 14bar and evaporate 8 kg/s of water. The inlet water to the boiler has a temperature of 400C and
bearhunter [10]

Answer:

Explanation: 2 is thy answer

7 0
3 years ago
How does food affect food choices<br><br><br> ?w?
Nat2105 [25]
The factors that influence our food choices would be , biological determinants such as hunger , appetite and taste , economic determinants such as cost , income , physical determination such as access , education, skills , social determination such as culture, family , peers and meal problems
4 0
3 years ago
What are the potential hazards relating to materials handling injuries?
Ann [662]

Answer:

it's says potential that something not moving.

incorrectly cutting ties or securing devices because

this is so dangerous thing I know because being electrocuted is here this for me.

8 0
3 years ago
Given the complex numbers A1 5 6/30 and A2 5 4 1 j5, (a) convert A1 to rectangular form; (b) convert A2 to polar and exponential
Deffense [45]

This question is incomplete, the complete question is;

Given the complex numbers A₁ = 6∠30 and A₂ = 4 + j5;

(a) convert A₁ to rectangular form

(b) convert A₂ to polar and exponential form

(c) calculate A₃ = (A₁ + A₂), giving your answer in polar form

(d) calculate A₄ = A₁A₂, giving your answer in rectangular form

(e) calculate A₅ = A₁/(A^{*}₂), giving your answer in exponential form.

Answer:

a) A₁ in rectangular form is 5.196 + j3

b) value of A₃  in polar form is 12.19∠41.02°

The polar form of A₂ is 6.403 ∠51.34°, exponential form of A₂ = 6.403e^{j51.34 }

c) value of A₃  in polar form is 12.19∠41.02°

d) A₄ in rectangular form is 5.784 + j37.98

e) A₅ in exponential form is 0.937e^{j81.34 }

Explanation:

Given data in the question;

a) A₁ = 6∠30

we convert A₁ to rectangular form

so

A₁ = 6(cos30° + jsin30°)

= 6cos30° + j6cos30°

= (6 × 0.866) + ( j × 6 × 0.5)

A₁  =  5.196 + j3

Therefore, A₁ in rectangular form is 5.196 + j3

b) A₂ = 4 + j5

we convert to polar and exponential form;

first we convert to polar form

A₂ = √((4)² + (5)²) ∠tan⁻¹( \frac{5}{4} )

= √(16 + 25) ∠tan⁻¹( 1.25 )

= √41 ∠ 51.34°

A₂ = 6.403 ∠51.34°

The polar form of A₂ is 6.403 ∠51.34°

next we convert to exponential form;

A∠β can be written as Ae^{j\beta }

so, A₂  in exponential form will be;

A₂ = 6.403e^{j51.34 }

exponential form of A₂ = 6.403e^{j51.34 }

c) A₃ = (A₁ + A₂)

giving your answer in polar form

so, A₁ = 6∠30 = 5.196 + j3 and A₂ = 4 + j5

we substitute

A₃ = (5.196 + j3) + ( 4 + j5)

= 9.196 + J8

next we convert to polar

A₃ = √((9.196)² + (8)²) ∠tan⁻¹( \frac{8 }{9.196} )

A₃ = √(84.566416 + 64) ∠tan⁻¹( 0.8699)

A₃ = √148.566416 ∠41.02°    

A₃ = 12.19∠41.02°

Therefore, value of A₃  in polar form is 12.19∠41.02°

d) A₄ = A₁A₂

giving your answer in rectangular form

we substitute

A₄ = (5.196 + j3) ( 4 + j5)

= 5.196( 4 + j5) + j3( 4 + j5)

= 20.784 + j25.98 + j12 - 15

A₄ = 5.784 + j37.98

Therefore, A₄ in rectangular form is 5.784 + j37.98

e) A₅ = A₁/(A^{*}₂)

giving your answer in exponential form

we know that A^{*}₂ is the complex  conjugate of A₂

so

A^{*}₂ = (6.403 ∠51.34° )*

= 6.403 ∠-51.34°

we convert to exponential form

A∠β can be written as Ae^{j\beta }

A^{*}₂  = 6.403e^{-j51.34 }

also

A₁ = 6∠30

we convert to polar form

A₁ = 6e^{j30 }

so A₅ = A₁/(A^{*}₂)

A₅ = 6e^{j30 } / 6.403e^{-j51.34 }

A₅  = (6/6.403) e^{j(30+51.34) }

A₅  = 0.937e^{j81.34 }

Therefore A₅ in exponential form is 0.937e^{j81.34 }

6 0
3 years ago
Other questions:
  • The following yield criteria are dependent on hydrostatic stress (a) Maximum distortion energy and maximum normal stress (b) Tre
    7·1 answer
  • A solid steel shaft has to transmit 100 kW at 160 RPM. Taking allowable shear stress at 70 Mpa, find the suitable diameter of th
    15·1 answer
  • A device that helps increase field worker productivity by providing reliable location and time
    13·1 answer
  • One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opp
    14·1 answer
  • What is the range of a 32-bit unsigned integer?
    15·1 answer
  • Give me an A please!!!¡!!!!¡
    5·1 answer
  • An industrial load with an operating voltage of 480/0° V is connected to the power system. The load absorbs 120 kW with a laggin
    7·1 answer
  • Which of the following describes a polar orbit?
    7·1 answer
  • What percentage of the map would have unhealthy levels of arsenic (140 total squares)?
    7·1 answer
  • Which apparatus is likely to carry a ladder? (There may be more than one answer.)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!