1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
1 year ago
15

Whats 47,000 resistance converted to kilo or mega ohms.

Engineering
1 answer:
Julli [10]1 year ago
7 0
  1. The conversion of 47,000 Ohms to kilo-ohms is equal to 47 kilo-ohms.
  2. The conversion of 47,000 Ohms to mega-ohms is equal to 0.047 kilo-ohms.

<h3>What is resistance?</h3>

Resistance can be defined as an opposition to the flow of current in an electric circuit. Also, the standard unit of measurement of the resistance of an electric component is Ohms, which can be converted to kilo-ohms or mega-ohms.

For Ohms to kilo-ohms, we have:

1 Ohms = 0.001 kilo-ohms

47,000 Ohms = X kilo-ohms

Cross-multiplying, we have:

X = 0.001 × 47000

X = 47 kilo-ohms.

For Ohms to mega-ohms, we have:

1,000,000 ohms = 1 mega-ohms

47,000 Ohms = X mega-ohms

Cross-multiplying, we have:

X1,000,000 = 47,000

X = 47,000/1,000,000

X = 0.047 kilo-ohms.

Read more resistance here: brainly.com/question/19582164

#SPJ1

You might be interested in
What is need for using fins?
antiseptic1488 [7]

Answer: It is a term of heat transfer process in which fins are surface that are the extension of the object to work for the heat exchangers to increase the heat exchanging rate.

 Explanation: Fins are considered to help the heat exchanger surface to lead the process of heat transfer by increasing the are of the surface which is exposed to the surroundings. Fins work really well with materials having high thermal conductivity and will  be more effective. They are preferred because they increase the rate of exchange of heat by increment in the convection.

7 0
3 years ago
A tensile test was operated to test some important mechanical properties. The specimen has a gage length = 1.8 in and diameter =
oee [108]

Answer:

a) 60000 psi

b) 1.11*10^6 psi

c) 112000 psi

d) 30.5%

e) 30%

Explanation:

The yield strength is the load applied when yielding behind divided by the section.

yield strength = Fyield / A

A = π/4 * D^2

A = 0.5 in^2

ys = Fy * A

y2 = 30000 * 0.5 = 60000 psi

The modulus of elasticity (E) is a material property that is related to the object property of stiffness (k).

k = E * L0 / A

And the stiffness is related to change of length:

Δx = F / k

Then:

Δx = F * A / (E * L0)

E = F * A / (Δx * L0)

When yielding began (approximately the end of the proportional peroid) the force was of 30000 lb and the change of length was

Δx = L - L0 = 1.8075 - 1.8 = 0.0075

Then:

E = 30000 * 0.5 / (0.0075 * 1.8) = 1.11*10^6 psi

Tensile strength is the strees at which the material breaks.

The maximum load was 56050 lb, so:

ts = 56050 / 0.5 = 112000 psi

The percent elongation is calculated as:

e = 100 * (L / L0)

e = 100 * (2.35 / 1.8 - 1) = 30.5 %

If it necked with and area of 0.35 in^2 the precent reduction in area was:

100 * (1 - A / A0)

100 * (1 - 0.35 / 0.5) = 30%

5 0
2 years ago
In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by
zvonat [6]

Answer:

R= 1.25

Explanation:

As given the local heat transfer,

Nu_x = 0.035 Re^{0.8}_x Pr^{1/3}

But we know as well that,

Nu=\frac{hx}{k}\\h=\frac{Nuk}{x}

Replacing the values

h_x=Nu_x \frac{k}{x}\\h_x= 0.035Re^{0.8}_xPr^{1/3} \frac{k}{x}

Reynolds number is define as,

Re_x = \frac{Vx}{\upsilon}

Where V is the velocity of the fluid and \upsilon is the Kinematic viscosity

Then replacing we have

h_x=0.035(\frac{Vx}{\upsilon})^{0.8}Pr^{1/3}kx^{-1}

h_x=0.035(\frac{V}{\upsilon})^{0.8}Pr^{1/3}kx^{0.8-1}

h_x=Ax^{-0.2}

<em>*Note that A is just a 'summary' of all of that constat there.</em>

<em>That is A=0.035(\frac{V}{\upsilon})^{0.8}Pr^{1/3}k</em>

Therefore at x=L the local convection heat transfer coefficient is

h_{x=L}=AL^{-0.2}

Definen that we need to find the average convection heat transfer coefficient in the entire plate lenght, so

h=\frac{1}{L}\int\limit^L_0 h_x dx\\h=\frac{1}{L}\int\limit^L_0 AL^{-0.2}dx\\h=\frac{A}{0.8L}L^{0.8}\\h=1.25AL^{-0.2}

The ratio of the average heat transfer coefficient over the entire plate  to the local convection heat transfer coefficient is

R = \frac{h}{h_L}\\R= \frac{1.25Al^{-0.2}}{AL^{-0.2}}\\R= 1.25

3 0
2 years ago
Find Re,Rc,R1 and R2!? Show your work.(hlp plz)
Brums [2.3K]
Can u be more clear with the question plsss?
3 0
3 years ago
5. The water in an 8-m-diameter, 3-m-high above-ground swimming pool is to be emptied by unplugging a 3-cm-diameter, 25-m-long h
frosja888 [35]

Answer:

The maximum discharge rate of water through the pipe is 0.00545 m³/s or 5.45 L/s.

Friction head and pressure head will cause the actual flow rate to be less.

Explanation:

Considering point 1 at the free surface of the pool, and point 2 at the exit of

pipe.

Using Bernoulli equation between

these two points simplifies to

P1/(p*g) + V1²/2g + z1 = P2/(p*g) + V2²/2g + z2

Let the reference level at the pipe exit (z2 = 0). Noting that the fluid at both points is open to the atmosphere (and thus P1 = P2 = Patm) and that the fluid velocity at the free surface is very low (V1 ≅ 0),

P/(p*g) + z1 = P/(p*g) + V2²/2g

z1 = V2²/2g

Note; z1 = h

V2max = √2gh

h = 3 m

V2max = √2 * 9.81 * 3

V2max = √58.86 = 7.67 m/s

maximum discharge rate of water through the pipe Qmax = Area A * Velocity of discharge V2max

Qmax = A * V2max

Diameter d = 3 cm = 0.03 m

A = Πd²/4 = (Π * 0.03²)/4 = 0.00071m³

Qmax = 0.00071 * 7.67 = 0.00545 m³/s

Qmax = 5.45 L/s

The maximum discharge rate of water through the pipe is 0.00545 m³/s or 5.45 L/s.

Actual flow rate will be less because of heads such as friction head and pressure head.

7 0
3 years ago
Other questions:
  • What are the seven problem solving steps?
    12·1 answer
  • Refers to the capability to keep moving forward on a specified grade.
    5·1 answer
  • 2.4 kg of nitrogen at an initial state of 285K and 150 kPa is compressed slowly in an isothermal process to a final pressure of
    8·1 answer
  • The velocity of a point mass that moves along the s-axis is given by s' = 40 - 3t^2 m/s, where t is in seconds. Find displacemen
    7·1 answer
  • The minimum safe working distance from exposed electrical conductors
    13·1 answer
  • A package is thrown down an incline at A with a velocity of 1 m/s. The package slides along the surface ABC to a conveyor belt w
    13·1 answer
  • Describe three parts of a fluid power system and the roles played by each to make the device work.
    8·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
  • Yellow wood glue will typically also work with metal, glass, and adhesives
    13·1 answer
  • It is better to know or not to know?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!