2AgNO3 + Ni2+ = Ni(NO3)2 + 2Ag<span>+</span>
From the reaction,
it can be seen that AgNO3 and Ni2+ has following amount of substance
relationshep:
n(AgNO3):n(Ni)=2:1
From the relationshep we can determinate requred moles of Ni2+:
n(AgNO3)=m/M= 15.5/169.87=0.09 moles
So, n (Ni)=n(AgNO3)/2=0.045 moles
Finaly needed mass of Ni2+ is:
m(Ni2+)=nxM=0,045x58.7=2.64g
Answer:
Explanation:
There is a formula for this:
M = DRT/P where M = molar mass. This just derived from PV = nRT where you say n = grams/molar mass. However, just with this formula, we can get D which is density at STP (1 atm and 273K). We find that D = 6.52g/L.
Answer:
The best practices officers should use when securing a crime scene is option D
D. They should secure a larger area than the actual crime scene
Explanation:
Officers should secure the scene by limiting access to the scene and movement within the scene
Three layers of secure perimeter should be used by officers to secure a crime scene, with the smallest inside perimeter being the actual crime scene
Next to the crime scene, is an inner perimeter which is the designated meeting point/command post
The outer perimeter, which is the third outer layer is to keep onlookers, passerby, and nonessential personnel at safety and out of the actual crime scene.