The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
Temperature is the average kinetic energy of a substance.
Answer: " <span>1.8 * 10²⁴ molecules of O₂ " .
________________________________________</span>
3.0 moles O₂ * (6.02 * 10²³ molecules O₂ / 1 mol O₂) =
[ (3.0) *(6.02 * 10²³) ] molecules O₂
= 1.806 * 10²⁴ ; round to 2 significant figures.
= 1.8 * 10²⁴ molecules of O₂ .
______________________________________________________
Answer:
34.9103 or 34.9 g
Explanation:
Remember Density is a broken heart: m/v.
In this scenario (Let x = # of grams in the sample of gasoline),
D = 0.7198 g/mL = x g / 48.5 mL
So,
(0.7198 g/mL) * (48.5 mL) = x g
x g = 34.9103 = 34.9 g (Accounting for Significant Figures)
Sin 32 = height/3.3 m
height = sin 32 (3.3 m)
height = 1.75 m