Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Electrons fill the electron orbitals (s, p, d, or f) starting from the lowest energy level going to the highest energy level.
I hope this helps. let me know if you need more information such as what the
Info: Al(oh)3 might be an improperly capitalized: Al(OH)3
Error: Some elements or groups in the reagents are not present in the products: O
Error: equation Al4C3+H2O=Al(oh)3+CH4 is an impossible reaction
Please correct your reaction or click on one of the suggestions below:
Al4C3 + H2O = Al(OH)3 + CH4
Answer:
Molecules are made up of atoms and are the smallest parts of compounds that still have properties. Atoms are the smallest parts of elements that still have properties.
Explanation:
It's not really possible to tell longitudinal vs. transverse in this image as given. However, we can say that the waves labeled A are high-frequency (short wavelengths) while the waves labeled B are low-frequency (long wavelengths). So, this third answer choice would be correct here.