1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
3 years ago
13

Object 1 and 2 attract each other with a electrostatic force of 36.0 units. If the charge of object 1 is changed to four times t

he original value, then the new electrostatic force will be
Physics
1 answer:
Mrac [35]3 years ago
8 0
The answer would be 6
You might be interested in
A 1210 kg rollercoaster car is
ratelena [41]

Answer: 4.98 m/s

Explanation:

You solve these kinetic energy, potential energy problems by using the fact P.E.+ K.E. = a constant as long as friction is ignored.

PEi = 0 in this case

KEi = ½mVi² = PEf+KEf = mghf + ½mVf²

½1210*8.31² = 1210*9.8*2.26 + ½1210*Vf²

½1210*Vf² = ½1210*8.31² - 1210*9.8*2.26

Vf² = 8.31² - 2*9.8*2.26 = 4.98² so Vf = 4.98m/s

3 0
3 years ago
The density of gasoline is 730 kg/m3 at 0°C. Its average coefficient of volume expansion is 9.60 10-4(°C)−1. Assume 1.00 gal of
kipiarov [429]

Answer: 0.4911 kg

Explanation:

We have the following data:

\rho_{0\°C}= 730 kg/m^{3} is the density of gasoline at 0\°C

\beta=9.60(10)^{-4} \°C^{-1} is the average coefficient of volume expansion

We need to find the extra kilograms of gasoline.

So, firstly we need to transform the volume of gasoline from gallons to m^{3}:

V=8.50 gal \frac{0.00380 m^{3}}{1 gal}=0.0323 m^{3} (1)

Knowing density is given by: \rho=\frac{m}{V}, we can find the mass m_{1} of 8.50 gallons:

m_{1}=\rho_{0\°C}V

m_{1}=(730 kg/m^{3})(0.0323 m^{3})=23.579 kg (2)

Now, we have to calculate the factor f by which the volume of gasoline is increased with the temperature, which is given by:

f=(1+\beta(T_{f}-T_{o})) (3)

Where T_{o}=0\°C is the initial temperature and T_{f}=21.7\°C is the final temperature.

f=(1+9.60(10)^{-4} \°C^{-1}(21.7\°C-0\°C)) (4)

f=1.020832 (5)

With this, we can calculate the density of gasoline at 21.7\°C:

\rho_{21.7\°C}=730 kg/m^{3} f=(730 kg/m^{3})(1.020832)

\rho_{21.7\°C}=745.207 kg/m^{3} (6)

Now we can calculate the mass of gasoline at this temperature:

m_{2}=\rho_{21.7\°C}V (7)

m_{2}=(745.207 kg/m^{3})(0.0323 m^{3}) (8)

m_{2}=24.070 kg (9)

And finally calculate the mass difference \Delta m:

\Delta m=m_{2}-m_{1}=24.070 kg-23.579 kg (10)

\Delta m=0.4911 kg (11) This is the extra mass of gasoline

6 0
4 years ago
A student is told to use 20.0 g of sodium chloride to make an aqueous solution that has a concentration of 10.0 g/L (grams of so
Stells [14]

Answer:

she should add solute to the solvent

Explanation:

Given data :

Mass of the sodium chloride, = 20.0 g

Concentration of the solution = 10 g/L

Volume of 20.0 g of sodium chloride = 7.50 mL

Now, from the concentration, we can conclude that for 10 g of sodium chloride volume of the solution is 1 L

thus, for 20 g of sodium chloride  volume of the solution is 2 L or 2000 mL

also,

Volume of solution = Volume of solute(sodium chloride) + volume of solvent (water)

thus,

2000 mL = 7.5 mL + volume of solvent (water)

or

volume of water = (2000 - 7.5) mL

or

volume of water = 1992.5 mL

or

volume of water = 199.25 L ≈ 199 L

6 0
3 years ago
Read 2 more answers
The question states: two large, parallel conducting plates are 12cm
AnnZ [28]

Answer:

1. 24375 N/C

2. 2925 V

Explanation:

d = 12 cm = 0.12 m

F = 3.9 x 10^-15 N

q = 1.6 x 10^-19 C

1. The relation between the electric field and the charge is given by

F = q E

So, E=\frac{F}{q}

E=\frac{3.9 \times 10^{-15}}{1.6 \times 10^{-19}}

E = 24375 N/C

2. The potential difference and the electric field is related by the given relation.

V = E x d

where, V be the potential difference, E be the electric field strength and d be the distance between the electrodes.

By substituting the values, we get

V = 24375 x 0.12 = 2925 Volt

6 0
3 years ago
Two asteroids identical to those above collide at right angles and stick together; i.e, their initial velocities were perpendicu
11111nata11111 [884]

Answer:

velocity = 62.89 m/s  in 58 degree measured from the x-axis

Explanation:

Relevant information:

Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.

Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.

Before collision Momentum of A = 1000 x 100 = $ 10^5$ kg - m/s in the right direction.

Before collision Momentum of B = 2000 x 80 = 1.6 x $ 10^5$  kg - m/s in upward direction.

Mass of System of after collision = 1000 + 2000 = 3000 kg

Now applying the Momentum Conservation, we get

Initial momentum in right direction = final momentum in right direction = $ 10^5$

And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x $ 10^5$

So, $ V_x = \frac{10^5}{3000} $  = $ \frac{100}{3} $  m/s

and $ V_y=\frac{160}{3}$  m/s

Therefore, velocity is = $ \sqrt{V_x^2 + V_y^2} $

                                   = $ \sqrt{(\frac{100}{3})^2 + (\frac{160}{3})^2} $

                                   = 62.89 m/s

And direction is

tan θ = $ \frac{V_y}{V_x}$     = 1.6

therefore, $ \theta = \tan^{-1}1.6 $

                   = $ 58 ^{\circ}$  from x-axis

4 0
3 years ago
Other questions:
  • A person gets into an elevator at the lobby level of a hotel together with his 30-kg suitcase, and gets out at the 10th floor 35
    15·1 answer
  • Desert sand is very hot in the day and very cool at night. what does this indicate about its specific heat capacity?
    13·1 answer
  • A baseball player throws a baseball with a velocity of 13 m/s North it is caught by a second player seven seconds later how far
    15·1 answer
  • Power lifter Paul lifts a 700.0kg barbell 2.00m in 0.400s. How much power did Paul develop?
    7·2 answers
  • A rock is dropped from the top of a vertical cliff and takes 3.00 s to reach the ground below the cliff, A second rock is thrown
    9·1 answer
  • Need help on this please
    14·2 answers
  • Where do consumers get their nitrogen from?
    12·1 answer
  • Explain the concept of "charge" and how it relates to electricity?
    11·2 answers
  • Can a measurement be exact
    8·1 answer
  • If 400g is 1kg find the ratio in the simplest form​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!