Complete Question
A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 560 N keeps it moving with a constant velocity. Find the coefficient of static friction and the coefficient of kinetic friction.
Answer:
The value for static friction is 
The value for static friction is 
Explanation:
From the question we are told that
The mass of the clock is 
The first horizontal force is 
The second horizontal force is 
Generally the static frictional force is equal to the first horizontal force
So

=> 
=> 
Generally the kinetic frictional force is equal to the second horizontal force
So



Answer:
Antarctic Circle
Explanation:
The Tropic of Cancer, which is also referred to as the Northern Tropic, is the most northerly circle of latitude on Earth at which the Sun can be directly overhead. This occurs on the June solstice, when the Northern Hemisphere is tilted toward the Sun to its maximum extent.
Tropic of Capricorn Is it Southern Hemisphere counterpart, marking the most southerly position at which the Sun can be directly overhead.
<h2>
The rank is : 
.</h2>
We need to rank the objects according to the magnitude of their momentum.
We know momentum ,
{ here m is mass and v is velocity }
Momentum of object A , 
Momentum of object B , 
Momentum of object C , 
Now, we can rank them in order of their magnitude of momentum .
.
Hence, this is the required solution.
Learn More :
Momentum
brainly.com/question/7957458
Answer:
A. Power = Work / Time
Explanation:
Power is the amount of work done over time, or rather the rate of work, which is given by the unit of watts (W). Since work is defined by Force * Displacement, we can also say Power = Force * Displacement / Time.
Answer:
Differences between freefall and weightlessness are as follows:
<h3>
<u>Freefall</u></h3>
- When a body falls only under the influence of gravity, it is called free fall.
- Freefall is not possible in absence of gravity.
- A body falling in a vacuum is an example of free fall.
<h3>
<u>Weightlessness</u></h3>
- Weightlessness is a condition at which the apparent weight of body becomes zero.
- Weightlessness is possible in absence of gravity.
- A man in a free falling lift is an example of weightlessness.
Hope this helps....
Good luck on your assignment....