The value of the function h(x + 1) is -x^2 - x + 1
<h3>How to evaluate the function?</h3>
The equation of the function is given as:
h(t) =-t^2 + t + 1
The function is given as:
h(x + 1)
This means that t = x + 1
So, we substitute t = x + 1 in the equation h(t) =-t^2 + t + 1
h(x + 1) =-(x + 1)^2 + (x + 1) + 1
Evaluate the exponent
h(x + 1) =-(x^2 + 2x + 1) + x + 1 + 1
Expand the brackets
h(x + 1) = -x^2 - 2x - 1 + x + 1 + 1
Evaluate the like terms
h(x + 1) = -x^2 - x + 1
Hence, the value of the function h(x + 1) is -x^2 - x + 1
Read more about functions at:
brainly.com/question/1415456
#SPJ1
<u>Complete question</u>
Consider the following function definition, and calculate the value of the function
h(t) = −t2 + t + 1 h(x + 1)
5X10=50 sq ft area
Around the 3 sides= 5+10+5=20
Explanation:
<u><em>First you subtract by -1 both sides of an equation.</em></u>
<u><em></em></u>
<u><em>Then, simplify the number.</em></u>
<u><em>34-1=33</em></u>
<u><em>x>33</em></u>
<u><em>Or interval notation 33,∞ </em></u>
<u><em>Final answer: → x>33 and 33,∞</em></u>
<u><em>Hope this helps!</em></u>
<u><em>Thanks!</em></u>
Answer:
Step-by-step explanation:
Your graph equation is going to be y = 100,000 - .06x