Step-by-step explanation:
let us give all the quantities in the problem variable names.
x= amount in utility stock
y = amount in electronics stock
c = amount in bond
“The total amount of $200,000 need not be fully invested at any one time.”
becomes
x + y + c ≤ 200, 000,
Also
“The amount invested in the stocks cannot be more than half the total amount invested”
a + b ≤1/2 (total amount invested),
=1/2(x + y + c).
(x+y-c)/2≤0
“The amount invested in the utility stock cannot exceed $40,000”
a ≤ 40, 000
“The amount invested in the bond must be at least $70,000”
c ≥ 70, 000
Putting this all together, our linear optimization problem is:
Maximize z = 1.09x + 1.04y + 1.05c
subject to
x+ y+ c ≤ 200, 000
x/2 +y/2 -c/2 ≤ 0
≤ 40, 000,
c ≥ 70, 000
a ≥ 0, b ≥ 0, c ≥ 0.
Answer:
The first number lets say is x
the second is y so
y=1/2x+8
x+1/2x+8=58
1 1/2x=50
x= 33 1/3
Hope This Helps!!!
2 because if you add 4 dollars to it is is 25$ and that is equal it 2 events
MN would be the answer to your question because they are parallel
Answer:
so sample size 9s school population =948