At the most distant point, the size of the speed is zero (0 m/s). This is a direct result of preservation of vitality. PE = KE. The most distant far from the harmony position is the maximum PE. Hence it can have no KE. No KE implies no speed since KE = .5mv2
The correct answer is D: which is none of the above.
Hint: a wreckling ball contains pontential energy that acts like a pendulum
a pot of water contains pontential thermal energy
Answer:
Speed of the car 1 =
Speed of the car 2 =
Explanation:
Given:
Mass of the car 1 , M₁ = Twice the mass of car 2(M₂)
mathematically,
M₁ = 2M₂
Kinetic Energy of the car 1 = Half the kinetic energy of the car 2
KE₁ = 0.5 KE₂
Now, the kinetic energy for a body is given as

where,
m = mass of the body
v = velocity of the body
thus,

or

or

or

or

or
.................(1)
also,

or

or

or

or

or

or

or

or

and, from equation (1)

Hence,
Speed of car 1 =
Speed of car 2 =
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A