1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
3 years ago
12

How does a 2.5 MW wind turbine costing $ 4 million compare to a 5-kw wind turbine $3 /W? a) Same $/w b) Smaller $/w c) Larger $/

w
Engineering
1 answer:
My name is Ann [436]3 years ago
4 0
MW means megawatt, and one megawatt is a million Watts.
The 2.5 MW turbine is 4/2.5=1.6 $/w
Answer B
You might be interested in
For some transformation having kinetics that obey the Avrami equation (Equation 10.17), the parameter n is known to have a value
OleMash [197]

Answer:

t = 25.10 sec

Explanation:

we know that Avrami equation

Y = 1 - e^{-kt^n}

here Y is percentage of completion  of reaction = 50%

t  is duration of reaction = 146 sec

so,

0.50 = 1 - e^{-k^146^2.1}

0.50 = e^{-k306.6}

taking natural log on both side

ln(0.5) = -k(306.6)

k = 2.26\times 10^{-3}

for 86 % completion

0.86 = 1 - e^{-2.26\times 10^{-3} \times t^{2.1}}

e^{-2.26\times 10^{-3} \times t^{2.1}} = 0.14

-2.26\times 10^{-3} \times t^{2.1} = ln(0.14)

t^{2.1} = 869.96

t = 25.10 sec

5 0
3 years ago
How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t
Mrac [35]

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

7 0
3 years ago
Determine the maximum mass of the crate so
Tpy6a [65]

Answer:

293 kg

Explanation:

Let's say the tension in each cable is Tb, Tc, and Td.

First, find the length of cable AD:

r = √(2² + 2² + 1²)

r = 3

Using similar triangles:

Tdx = 2/3 Td

Tdy = 2/3 Td

Tdz = 1/3 Td

Sum of the forces in the x direction:

∑F = ma

Tb − 2/3 Td = 0

Td = 3/2 Tb

Sum of the forces in the y direction:

∑F = ma

2/3 Td − Tc = 0

Td = 3/2 Tc

Sum of the forces in the z direction:

∑F = ma

1/3 Td − mg = 0

Td = 3mg

From the first two equations, we know Td is greater than Tb or Tc.  So we need to set Td to 8.6 kN, or 8600 N.

8600 N = 3mg

m = 8600 N / (3 × 9.8 m/s²)

m ≈ 292.5 kg

Rounded to three significant figures, the maximum mass of the crate is 293 kg.

7 0
3 years ago
Refrigerant-134a at 700 kPa, 70°C, and 7.2 kg/min is cooled by water in a condenser until it exists as a saturated liquid at the
alex41 [277]

Answer:

The mass flow rate of cooling water required to cool the refrigerant is 123.788\,\frac{kg}{min}.

Explanation:

A condenser is a heat exchanger used to cool working fluid (Refrigerant 134a) at the expense of cooling fluid (water), which works usually at steady state. Let suppose that there is no heat interactions between condenser and surroundings.The condenser is modelled after the First Law of Thermodynamics, which states:

\dot Q_{ref} - \dot Q_{w} = 0

\dot Q_{ref} = \dot Q_{w}

\dot m_{ref}\cdot (h_{ref, in} - h_{ref,out}) = \dot m_{w}\cdot (h_{w, out} - h_{w,in})

The mass flow rate of the cooling water is now cleared:

\dot m_{w} = \dot m_{ref }\cdot \frac{h_{ref,in}-h_{ref,out}}{h_{w,out}-h_{w,in}}

Given that h_{ref,in} = 808.34\,\frac{kJ}{kg}, h_{ref, out} = 88.82\,\frac{kJ}{kg}, h_{w,out} = 104.83\,\frac{kJ}{kg} and h_{w,in} = 62.98\,\frac{kJ}{kg}, the mass flow of the cooling water is:

\dot m_{w} = \left(7.2\,\frac{kg}{min} \right)\cdot \left(\frac{808.34\,\frac{kJ}{kg}-88.82\,\frac{kJ}{kg} }{104.83\,\frac{kJ}{kg}-62.98\,\frac{kJ}{kg} } \right)

\dot m_{w} = 123.788\,\frac{kg}{min}

The mass flow rate of cooling water required to cool the refrigerant is 123.788\,\frac{kg}{min}.

4 0
3 years ago
When two or more simple machines are combined they form
Korvikt [17]

Answer:

Compound Machine

Explanation:

A compound machine is a type of machine that is formed from 2 or more simple machines. Fore example, a shovel is a wedge and a lever, a bike is made up of wheels and axles, screws, and levers.

3 0
3 years ago
Other questions:
  • After informing his employer that he had cancer, Maury was abruptly fired. The federal legislation that prohibits discrimination
    6·1 answer
  • Technician A says diesel engines are also called compression ignition engines. Technician B says diesel engines have much higher
    9·1 answer
  • Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
    11·1 answer
  • Compare the temperature dependence of Nabarro-Herring and Coble creep. Which is more temperature-sensitive
    15·1 answer
  • An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 30 . It has been determ
    5·1 answer
  • Which of the following is a purpose of sports biomechanics?
    14·1 answer
  • Is the science of measurement
    13·2 answers
  • 10 properties of metals?<br> ​
    10·2 answers
  • How to clean a snowblower carburetor without removing it.
    11·1 answer
  • Describe how you would control employee exposure to excessive noise in a mining environment
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!