Density is the ratio of mass to volume. The substance with the lowest density has the largest volume. The volume of magnesium will be the largest.
<h3>What is density?</h3>
Density is the mass per volume of the substance. It is denoted by the Latin letter rho (ρ) or D. It is the division of the mass in kilograms to the volume in cubic meters.
The relation of the density is inversely proportional to the volume and when the order is given in increasing order of density then magnesium will have the largest volume as it has the least density.
Therefore, magnesium has the largest volume.
Learn more about density here:
brainly.com/question/17596236
#SPJ1
Answer:
Ⓑ Both plants and animals release energy from glucose/sugar in cellular respiration.
Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, P is Pressure of the gas (Pa), V is volume of the gas (m³), n is the number of moles of gas (mol), R is the Universal gas constant (8.314 J mol⁻¹ K⁻¹) and T is the temperature in Kelvin (K)
The given data for the gas is,
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10⁻³ m³
T = 292 K
R = 8.314 J mol⁻¹ K⁻¹
n = ?
By applying the formula,
283710 Pa x 98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
n = 11.45 mol
Hence,moles of gas is 11.45 mol.
Answer:- The direction of the polarity of the indicated bond is from carbon to oxygen.
Explanations:- There are two types of covalent compounds, polar and non polar. If the bond is between two same atoms for example, H-H, Cl-Cl etc then the bond is non polar. If the bond is between two different atoms then the bond would be polar. The direction of the polarity is from loss electron negative atom to more electron negative atom.
Oxygen is more electron negative than carbon. So, being more electron negative, the bonding electrons are more towards oxygen and it cases partial negative charge on oxygen and partial positive charge on carbon. The direction of the polarity is from less electron negative carbon to more electron negative oxygen.
It is shown in the diagram below:
Answer:
The sugar in DNA is deoxyribose. ... Nucleotides in DNA contain four different nitrogenous bases: Thymine, Cytosine, Adenine, or Guanine. There are two groups of bases: Pyrimidines: Cytosine and Thymine each have a single six-member ring.