Answer:
Explanation:
1)
Given data:
Initial volume of balloon = 0.8 L
Initial temperature = 12°C ( 12+273= 285 K)
Final temperature = 300°C (300+273 = 573 K)
Final volume = ?
Solution:
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 0.8 L .573 K / 285 K
V₂ = 458.4 L / 285
V₂ = 1.61 L
2)
Initial pressure = 204 kpa
Initial temperature = 29°C ( 29 + 273 = 302 K)
Final temperature = ?
Final pressure = 300 kpa
Solution:
P₁/T₁ = P₂/T₂
T₂ = T₁P₂/P₁
T₂ = 302 K . 300 kpa / 204 kpa
T₂ = 90600 K/ 204
T₂ = 444.12 K
3)
Given data:
Initial volume = 14 L
Initial pressure = 2.1 atm
Initial temperature = 100 K
Final temperature = 450 K
Final volume = ?
Final pressure = 1.2 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2.1 atm × 14 L × 450 K / 100 K × 1.2 atm
V₂ = 13230 L / 120
V₂ = 110.25 L
Answer:
Threatened Species: A threatened species is a species at risk but not yet endangered. California sea otters were classififed as a threatened species. Laws were passed to protect the otters and now they have increased their population size.
Invasive Species: One of the main causes of extinction and endangered species is the introduction of an exotic species. New exotic species are called invasive species. Invasive species can disrupt food chains, carry disease, prey on native species directly, and out-compete native species for limited resources, like food.
Extinction: If a population decreases too much in numbers, they disappear. Extinct species mean that the species has died out and no individuals left. An example of extinction: New Zealand was once home to a bird called the Giant Moa. Humans settled as their population increased the Moa population decreased. The species is now extinct.
Explanation:
Sugar. (We need a design tech section)
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
Hept for 7, hence the number is seven.